1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_NO_STATIC_ASSERT
#include "main.h"
#undef VERIFY_IS_APPROX
#define VERIFY_IS_APPROX(a, b) VERIFY((a)==(b));
#undef VERIFY_IS_NOT_APPROX
#define VERIFY_IS_NOT_APPROX(a, b) VERIFY((a)!=(b));
template<typename MatrixType> void signed_integer_type_tests(const MatrixType& m)
{
typedef typename MatrixType::Scalar Scalar;
enum { is_signed = (Scalar(-1) > Scalar(0)) ? 0 : 1 };
VERIFY(is_signed == 1);
Index rows = m.rows();
Index cols = m.cols();
MatrixType m1(rows, cols),
m2 = MatrixType::Random(rows, cols),
mzero = MatrixType::Zero(rows, cols);
do {
m1 = MatrixType::Random(rows, cols);
} while(m1 == mzero || m1 == m2);
// check linear structure
Scalar s1;
do {
s1 = internal::random<Scalar>();
} while(s1 == 0);
VERIFY_IS_EQUAL(-(-m1), m1);
VERIFY_IS_EQUAL(-m2+m1+m2, m1);
VERIFY_IS_EQUAL((-m1+m2)*s1, -s1*m1+s1*m2);
}
template<typename MatrixType> void integer_type_tests(const MatrixType& m)
{
typedef typename MatrixType::Scalar Scalar;
VERIFY(NumTraits<Scalar>::IsInteger);
enum { is_signed = (Scalar(-1) > Scalar(0)) ? 0 : 1 };
VERIFY(int(NumTraits<Scalar>::IsSigned) == is_signed);
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
Index rows = m.rows();
Index cols = m.cols();
// this test relies a lot on Random.h, and there's not much more that we can do
// to test it, hence I consider that we will have tested Random.h
MatrixType m1(rows, cols),
m2 = MatrixType::Random(rows, cols),
m3(rows, cols),
mzero = MatrixType::Zero(rows, cols);
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
SquareMatrixType identity = SquareMatrixType::Identity(rows, rows),
square = SquareMatrixType::Random(rows, rows);
VectorType v1(rows),
v2 = VectorType::Random(rows),
vzero = VectorType::Zero(rows);
do {
m1 = MatrixType::Random(rows, cols);
} while(m1 == mzero || m1 == m2);
do {
v1 = VectorType::Random(rows);
} while(v1 == vzero || v1 == v2);
VERIFY_IS_APPROX( v1, v1);
VERIFY_IS_NOT_APPROX( v1, 2*v1);
VERIFY_IS_APPROX( vzero, v1-v1);
VERIFY_IS_APPROX( m1, m1);
VERIFY_IS_NOT_APPROX( m1, 2*m1);
VERIFY_IS_APPROX( mzero, m1-m1);
VERIFY_IS_APPROX(m3 = m1,m1);
MatrixType m4;
VERIFY_IS_APPROX(m4 = m1,m1);
m3.real() = m1.real();
VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), static_cast<const MatrixType&>(m1).real());
VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), m1.real());
// check == / != operators
VERIFY(m1==m1);
VERIFY(m1!=m2);
VERIFY(!(m1==m2));
VERIFY(!(m1!=m1));
m1 = m2;
VERIFY(m1==m2);
VERIFY(!(m1!=m2));
// check linear structure
Scalar s1;
do {
s1 = internal::random<Scalar>();
} while(s1 == 0);
VERIFY_IS_EQUAL(m1+m1, 2*m1);
VERIFY_IS_EQUAL(m1+m2-m1, m2);
VERIFY_IS_EQUAL(m1*s1, s1*m1);
VERIFY_IS_EQUAL((m1+m2)*s1, s1*m1+s1*m2);
m3 = m2; m3 += m1;
VERIFY_IS_EQUAL(m3, m1+m2);
m3 = m2; m3 -= m1;
VERIFY_IS_EQUAL(m3, m2-m1);
m3 = m2; m3 *= s1;
VERIFY_IS_EQUAL(m3, s1*m2);
// check matrix product.
VERIFY_IS_APPROX(identity * m1, m1);
VERIFY_IS_APPROX(square * (m1 + m2), square * m1 + square * m2);
VERIFY_IS_APPROX((m1 + m2).transpose() * square, m1.transpose() * square + m2.transpose() * square);
VERIFY_IS_APPROX((m1 * m2.transpose()) * m1, m1 * (m2.transpose() * m1));
}
template<int>
void integer_types_extra()
{
VERIFY_IS_EQUAL(int(internal::scalar_div_cost<int>::value), 8);
VERIFY_IS_EQUAL(int(internal::scalar_div_cost<unsigned int>::value), 8);
if(sizeof(long)>sizeof(int)) {
VERIFY(int(internal::scalar_div_cost<long>::value) > int(internal::scalar_div_cost<int>::value));
VERIFY(int(internal::scalar_div_cost<unsigned long>::value) > int(internal::scalar_div_cost<int>::value));
}
}
EIGEN_DECLARE_TEST(integer_types)
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( integer_type_tests(Matrix<unsigned int, 1, 1>()) );
CALL_SUBTEST_1( integer_type_tests(Matrix<unsigned long, 3, 4>()) );
CALL_SUBTEST_2( integer_type_tests(Matrix<long, 2, 2>()) );
CALL_SUBTEST_2( signed_integer_type_tests(Matrix<long, 2, 2>()) );
CALL_SUBTEST_3( integer_type_tests(Matrix<char, 2, Dynamic>(2, 10)) );
CALL_SUBTEST_3( signed_integer_type_tests(Matrix<signed char, 2, Dynamic>(2, 10)) );
CALL_SUBTEST_4( integer_type_tests(Matrix<unsigned char, 3, 3>()) );
CALL_SUBTEST_4( integer_type_tests(Matrix<unsigned char, Dynamic, Dynamic>(20, 20)) );
CALL_SUBTEST_5( integer_type_tests(Matrix<short, Dynamic, 4>(7, 4)) );
CALL_SUBTEST_5( signed_integer_type_tests(Matrix<short, Dynamic, 4>(7, 4)) );
CALL_SUBTEST_6( integer_type_tests(Matrix<unsigned short, 4, 4>()) );
#if EIGEN_HAS_CXX11
CALL_SUBTEST_7( integer_type_tests(Matrix<long long, 11, 13>()) );
CALL_SUBTEST_7( signed_integer_type_tests(Matrix<long long, 11, 13>()) );
CALL_SUBTEST_8( integer_type_tests(Matrix<unsigned long long, Dynamic, 5>(1, 5)) );
#endif
}
CALL_SUBTEST_9( integer_types_extra<0>() );
}
|