1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/LU>
#include "solverbase.h"
using namespace std;
template<typename MatrixType>
typename MatrixType::RealScalar matrix_l1_norm(const MatrixType& m) {
return m.cwiseAbs().colwise().sum().maxCoeff();
}
template<typename MatrixType> void lu_non_invertible()
{
STATIC_CHECK(( internal::is_same<typename FullPivLU<MatrixType>::StorageIndex,int>::value ));
typedef typename MatrixType::RealScalar RealScalar;
/* this test covers the following files:
LU.h
*/
Index rows, cols, cols2;
if(MatrixType::RowsAtCompileTime==Dynamic)
{
rows = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE);
}
else
{
rows = MatrixType::RowsAtCompileTime;
}
if(MatrixType::ColsAtCompileTime==Dynamic)
{
cols = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE);
cols2 = internal::random<int>(2,EIGEN_TEST_MAX_SIZE);
}
else
{
cols2 = cols = MatrixType::ColsAtCompileTime;
}
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime
};
typedef typename internal::kernel_retval_base<FullPivLU<MatrixType> >::ReturnType KernelMatrixType;
typedef typename internal::image_retval_base<FullPivLU<MatrixType> >::ReturnType ImageMatrixType;
typedef Matrix<typename MatrixType::Scalar, ColsAtCompileTime, ColsAtCompileTime>
CMatrixType;
typedef Matrix<typename MatrixType::Scalar, RowsAtCompileTime, RowsAtCompileTime>
RMatrixType;
Index rank = internal::random<Index>(1, (std::min)(rows, cols)-1);
// The image of the zero matrix should consist of a single (zero) column vector
VERIFY((MatrixType::Zero(rows,cols).fullPivLu().image(MatrixType::Zero(rows,cols)).cols() == 1));
// The kernel of the zero matrix is the entire space, and thus is an invertible matrix of dimensions cols.
KernelMatrixType kernel = MatrixType::Zero(rows,cols).fullPivLu().kernel();
VERIFY((kernel.fullPivLu().isInvertible()));
MatrixType m1(rows, cols), m3(rows, cols2);
CMatrixType m2(cols, cols2);
createRandomPIMatrixOfRank(rank, rows, cols, m1);
FullPivLU<MatrixType> lu;
// The special value 0.01 below works well in tests. Keep in mind that we're only computing the rank
// of singular values are either 0 or 1.
// So it's not clear at all that the epsilon should play any role there.
lu.setThreshold(RealScalar(0.01));
lu.compute(m1);
MatrixType u(rows,cols);
u = lu.matrixLU().template triangularView<Upper>();
RMatrixType l = RMatrixType::Identity(rows,rows);
l.block(0,0,rows,(std::min)(rows,cols)).template triangularView<StrictlyLower>()
= lu.matrixLU().block(0,0,rows,(std::min)(rows,cols));
VERIFY_IS_APPROX(lu.permutationP() * m1 * lu.permutationQ(), l*u);
KernelMatrixType m1kernel = lu.kernel();
ImageMatrixType m1image = lu.image(m1);
VERIFY_IS_APPROX(m1, lu.reconstructedMatrix());
VERIFY(rank == lu.rank());
VERIFY(cols - lu.rank() == lu.dimensionOfKernel());
VERIFY(!lu.isInjective());
VERIFY(!lu.isInvertible());
VERIFY(!lu.isSurjective());
VERIFY_IS_MUCH_SMALLER_THAN((m1 * m1kernel), m1);
VERIFY(m1image.fullPivLu().rank() == rank);
VERIFY_IS_APPROX(m1 * m1.adjoint() * m1image, m1image);
check_solverbase<CMatrixType, MatrixType>(m1, lu, rows, cols, cols2);
m2 = CMatrixType::Random(cols,cols2);
m3 = m1*m2;
m2 = CMatrixType::Random(cols,cols2);
// test that the code, which does resize(), may be applied to an xpr
m2.block(0,0,m2.rows(),m2.cols()) = lu.solve(m3);
VERIFY_IS_APPROX(m3, m1*m2);
}
template<typename MatrixType> void lu_invertible()
{
/* this test covers the following files:
FullPivLU.h
*/
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
Index size = MatrixType::RowsAtCompileTime;
if( size==Dynamic)
size = internal::random<Index>(1,EIGEN_TEST_MAX_SIZE);
MatrixType m1(size, size), m2(size, size), m3(size, size);
FullPivLU<MatrixType> lu;
lu.setThreshold(RealScalar(0.01));
do {
m1 = MatrixType::Random(size,size);
lu.compute(m1);
} while(!lu.isInvertible());
VERIFY_IS_APPROX(m1, lu.reconstructedMatrix());
VERIFY(0 == lu.dimensionOfKernel());
VERIFY(lu.kernel().cols() == 1); // the kernel() should consist of a single (zero) column vector
VERIFY(size == lu.rank());
VERIFY(lu.isInjective());
VERIFY(lu.isSurjective());
VERIFY(lu.isInvertible());
VERIFY(lu.image(m1).fullPivLu().isInvertible());
check_solverbase<MatrixType, MatrixType>(m1, lu, size, size, size);
MatrixType m1_inverse = lu.inverse();
m3 = MatrixType::Random(size,size);
m2 = lu.solve(m3);
VERIFY_IS_APPROX(m2, m1_inverse*m3);
RealScalar rcond = (RealScalar(1) / matrix_l1_norm(m1)) / matrix_l1_norm(m1_inverse);
const RealScalar rcond_est = lu.rcond();
// Verify that the estimated condition number is within a factor of 10 of the
// truth.
VERIFY(rcond_est > rcond / 10 && rcond_est < rcond * 10);
// Regression test for Bug 302
MatrixType m4 = MatrixType::Random(size,size);
VERIFY_IS_APPROX(lu.solve(m3*m4), lu.solve(m3)*m4);
}
template<typename MatrixType> void lu_partial_piv(Index size = MatrixType::ColsAtCompileTime)
{
/* this test covers the following files:
PartialPivLU.h
*/
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
MatrixType m1(size, size), m2(size, size), m3(size, size);
m1.setRandom();
PartialPivLU<MatrixType> plu(m1);
STATIC_CHECK(( internal::is_same<typename PartialPivLU<MatrixType>::StorageIndex,int>::value ));
VERIFY_IS_APPROX(m1, plu.reconstructedMatrix());
check_solverbase<MatrixType, MatrixType>(m1, plu, size, size, size);
MatrixType m1_inverse = plu.inverse();
m3 = MatrixType::Random(size,size);
m2 = plu.solve(m3);
VERIFY_IS_APPROX(m2, m1_inverse*m3);
RealScalar rcond = (RealScalar(1) / matrix_l1_norm(m1)) / matrix_l1_norm(m1_inverse);
const RealScalar rcond_est = plu.rcond();
// Verify that the estimate is within a factor of 10 of the truth.
VERIFY(rcond_est > rcond / 10 && rcond_est < rcond * 10);
}
template<typename MatrixType> void lu_verify_assert()
{
MatrixType tmp;
FullPivLU<MatrixType> lu;
VERIFY_RAISES_ASSERT(lu.matrixLU())
VERIFY_RAISES_ASSERT(lu.permutationP())
VERIFY_RAISES_ASSERT(lu.permutationQ())
VERIFY_RAISES_ASSERT(lu.kernel())
VERIFY_RAISES_ASSERT(lu.image(tmp))
VERIFY_RAISES_ASSERT(lu.solve(tmp))
VERIFY_RAISES_ASSERT(lu.transpose().solve(tmp))
VERIFY_RAISES_ASSERT(lu.adjoint().solve(tmp))
VERIFY_RAISES_ASSERT(lu.determinant())
VERIFY_RAISES_ASSERT(lu.rank())
VERIFY_RAISES_ASSERT(lu.dimensionOfKernel())
VERIFY_RAISES_ASSERT(lu.isInjective())
VERIFY_RAISES_ASSERT(lu.isSurjective())
VERIFY_RAISES_ASSERT(lu.isInvertible())
VERIFY_RAISES_ASSERT(lu.inverse())
PartialPivLU<MatrixType> plu;
VERIFY_RAISES_ASSERT(plu.matrixLU())
VERIFY_RAISES_ASSERT(plu.permutationP())
VERIFY_RAISES_ASSERT(plu.solve(tmp))
VERIFY_RAISES_ASSERT(plu.transpose().solve(tmp))
VERIFY_RAISES_ASSERT(plu.adjoint().solve(tmp))
VERIFY_RAISES_ASSERT(plu.determinant())
VERIFY_RAISES_ASSERT(plu.inverse())
}
EIGEN_DECLARE_TEST(lu)
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( lu_non_invertible<Matrix3f>() );
CALL_SUBTEST_1( lu_invertible<Matrix3f>() );
CALL_SUBTEST_1( lu_verify_assert<Matrix3f>() );
CALL_SUBTEST_1( lu_partial_piv<Matrix3f>() );
CALL_SUBTEST_2( (lu_non_invertible<Matrix<double, 4, 6> >()) );
CALL_SUBTEST_2( (lu_verify_assert<Matrix<double, 4, 6> >()) );
CALL_SUBTEST_2( lu_partial_piv<Matrix2d>() );
CALL_SUBTEST_2( lu_partial_piv<Matrix4d>() );
CALL_SUBTEST_2( (lu_partial_piv<Matrix<double,6,6> >()) );
CALL_SUBTEST_3( lu_non_invertible<MatrixXf>() );
CALL_SUBTEST_3( lu_invertible<MatrixXf>() );
CALL_SUBTEST_3( lu_verify_assert<MatrixXf>() );
CALL_SUBTEST_4( lu_non_invertible<MatrixXd>() );
CALL_SUBTEST_4( lu_invertible<MatrixXd>() );
CALL_SUBTEST_4( lu_partial_piv<MatrixXd>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)) );
CALL_SUBTEST_4( lu_verify_assert<MatrixXd>() );
CALL_SUBTEST_5( lu_non_invertible<MatrixXcf>() );
CALL_SUBTEST_5( lu_invertible<MatrixXcf>() );
CALL_SUBTEST_5( lu_verify_assert<MatrixXcf>() );
CALL_SUBTEST_6( lu_non_invertible<MatrixXcd>() );
CALL_SUBTEST_6( lu_invertible<MatrixXcd>() );
CALL_SUBTEST_6( lu_partial_piv<MatrixXcd>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)) );
CALL_SUBTEST_6( lu_verify_assert<MatrixXcd>() );
CALL_SUBTEST_7(( lu_non_invertible<Matrix<float,Dynamic,16> >() ));
// Test problem size constructors
CALL_SUBTEST_9( PartialPivLU<MatrixXf>(10) );
CALL_SUBTEST_9( FullPivLU<MatrixXf>(10, 20); );
}
}
|