1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#if defined(EIGEN_TEST_PART_7)
#ifndef EIGEN_NO_STATIC_ASSERT
#define EIGEN_NO_STATIC_ASSERT // turn static asserts into runtime asserts in order to check them
#endif
// ignore double-promotion diagnostic for clang and gcc, if we check for static assertion anyway:
// TODO do the same for MSVC?
#if defined(__clang__)
# if (__clang_major__ * 100 + __clang_minor__) >= 308
# pragma clang diagnostic ignored "-Wdouble-promotion"
# endif
#elif defined(__GNUC__)
// TODO is there a minimal GCC version for this? At least g++-4.7 seems to be fine with this.
# pragma GCC diagnostic ignored "-Wdouble-promotion"
#endif
#endif
#if defined(EIGEN_TEST_PART_1) || defined(EIGEN_TEST_PART_2) || defined(EIGEN_TEST_PART_3)
#ifndef EIGEN_DONT_VECTORIZE
#define EIGEN_DONT_VECTORIZE
#endif
#endif
static bool g_called;
#define EIGEN_SCALAR_BINARY_OP_PLUGIN { g_called |= (!internal::is_same<LhsScalar,RhsScalar>::value); }
#include "main.h"
using namespace std;
#define VERIFY_MIX_SCALAR(XPR,REF) \
g_called = false; \
VERIFY_IS_APPROX(XPR,REF); \
VERIFY( g_called && #XPR" not properly optimized");
template<int SizeAtCompileType>
void raise_assertion(Index size = SizeAtCompileType)
{
// VERIFY_RAISES_ASSERT(mf+md); // does not even compile
Matrix<float, SizeAtCompileType, 1> vf; vf.setRandom(size);
Matrix<double, SizeAtCompileType, 1> vd; vd.setRandom(size);
VERIFY_RAISES_ASSERT(vf=vd);
VERIFY_RAISES_ASSERT(vf+=vd);
VERIFY_RAISES_ASSERT(vf-=vd);
VERIFY_RAISES_ASSERT(vd=vf);
VERIFY_RAISES_ASSERT(vd+=vf);
VERIFY_RAISES_ASSERT(vd-=vf);
// vd.asDiagonal() * mf; // does not even compile
// vcd.asDiagonal() * mf; // does not even compile
#if 0 // we get other compilation errors here than just static asserts
VERIFY_RAISES_ASSERT(vd.dot(vf));
#endif
}
template<int SizeAtCompileType> void mixingtypes(int size = SizeAtCompileType)
{
typedef std::complex<float> CF;
typedef std::complex<double> CD;
typedef Matrix<float, SizeAtCompileType, SizeAtCompileType> Mat_f;
typedef Matrix<double, SizeAtCompileType, SizeAtCompileType> Mat_d;
typedef Matrix<std::complex<float>, SizeAtCompileType, SizeAtCompileType> Mat_cf;
typedef Matrix<std::complex<double>, SizeAtCompileType, SizeAtCompileType> Mat_cd;
typedef Matrix<float, SizeAtCompileType, 1> Vec_f;
typedef Matrix<double, SizeAtCompileType, 1> Vec_d;
typedef Matrix<std::complex<float>, SizeAtCompileType, 1> Vec_cf;
typedef Matrix<std::complex<double>, SizeAtCompileType, 1> Vec_cd;
Mat_f mf = Mat_f::Random(size,size);
Mat_d md = mf.template cast<double>();
//Mat_d rd = md;
Mat_cf mcf = Mat_cf::Random(size,size);
Mat_cd mcd = mcf.template cast<complex<double> >();
Mat_cd rcd = mcd;
Vec_f vf = Vec_f::Random(size,1);
Vec_d vd = vf.template cast<double>();
Vec_cf vcf = Vec_cf::Random(size,1);
Vec_cd vcd = vcf.template cast<complex<double> >();
float sf = internal::random<float>();
double sd = internal::random<double>();
complex<float> scf = internal::random<complex<float> >();
complex<double> scd = internal::random<complex<double> >();
mf+mf;
float epsf = std::sqrt(std::numeric_limits<float> ::min EIGEN_EMPTY ());
double epsd = std::sqrt(std::numeric_limits<double>::min EIGEN_EMPTY ());
while(std::abs(sf )<epsf) sf = internal::random<float>();
while(std::abs(sd )<epsd) sd = internal::random<double>();
while(std::abs(scf)<epsf) scf = internal::random<CF>();
while(std::abs(scd)<epsd) scd = internal::random<CD>();
// check scalar products
VERIFY_MIX_SCALAR(vcf * sf , vcf * complex<float>(sf));
VERIFY_MIX_SCALAR(sd * vcd , complex<double>(sd) * vcd);
VERIFY_MIX_SCALAR(vf * scf , vf.template cast<complex<float> >() * scf);
VERIFY_MIX_SCALAR(scd * vd , scd * vd.template cast<complex<double> >());
VERIFY_MIX_SCALAR(vcf * 2 , vcf * complex<float>(2));
VERIFY_MIX_SCALAR(vcf * 2.1 , vcf * complex<float>(2.1));
VERIFY_MIX_SCALAR(2 * vcf, vcf * complex<float>(2));
VERIFY_MIX_SCALAR(2.1 * vcf , vcf * complex<float>(2.1));
// check scalar quotients
VERIFY_MIX_SCALAR(vcf / sf , vcf / complex<float>(sf));
VERIFY_MIX_SCALAR(vf / scf , vf.template cast<complex<float> >() / scf);
VERIFY_MIX_SCALAR(vf.array() / scf, vf.template cast<complex<float> >().array() / scf);
VERIFY_MIX_SCALAR(scd / vd.array() , scd / vd.template cast<complex<double> >().array());
// check scalar increment
VERIFY_MIX_SCALAR(vcf.array() + sf , vcf.array() + complex<float>(sf));
VERIFY_MIX_SCALAR(sd + vcd.array(), complex<double>(sd) + vcd.array());
VERIFY_MIX_SCALAR(vf.array() + scf, vf.template cast<complex<float> >().array() + scf);
VERIFY_MIX_SCALAR(scd + vd.array() , scd + vd.template cast<complex<double> >().array());
// check scalar subtractions
VERIFY_MIX_SCALAR(vcf.array() - sf , vcf.array() - complex<float>(sf));
VERIFY_MIX_SCALAR(sd - vcd.array(), complex<double>(sd) - vcd.array());
VERIFY_MIX_SCALAR(vf.array() - scf, vf.template cast<complex<float> >().array() - scf);
VERIFY_MIX_SCALAR(scd - vd.array() , scd - vd.template cast<complex<double> >().array());
// check scalar powers
VERIFY_MIX_SCALAR( pow(vcf.array(), sf), Eigen::pow(vcf.array(), complex<float>(sf)) );
VERIFY_MIX_SCALAR( vcf.array().pow(sf) , Eigen::pow(vcf.array(), complex<float>(sf)) );
VERIFY_MIX_SCALAR( pow(sd, vcd.array()), Eigen::pow(complex<double>(sd), vcd.array()) );
VERIFY_MIX_SCALAR( Eigen::pow(vf.array(), scf), Eigen::pow(vf.template cast<complex<float> >().array(), scf) );
VERIFY_MIX_SCALAR( vf.array().pow(scf) , Eigen::pow(vf.template cast<complex<float> >().array(), scf) );
VERIFY_MIX_SCALAR( Eigen::pow(scd, vd.array()), Eigen::pow(scd, vd.template cast<complex<double> >().array()) );
// check dot product
vf.dot(vf);
VERIFY_IS_APPROX(vcf.dot(vf), vcf.dot(vf.template cast<complex<float> >()));
// check diagonal product
VERIFY_IS_APPROX(vf.asDiagonal() * mcf, vf.template cast<complex<float> >().asDiagonal() * mcf);
VERIFY_IS_APPROX(vcd.asDiagonal() * md, vcd.asDiagonal() * md.template cast<complex<double> >());
VERIFY_IS_APPROX(mcf * vf.asDiagonal(), mcf * vf.template cast<complex<float> >().asDiagonal());
VERIFY_IS_APPROX(md * vcd.asDiagonal(), md.template cast<complex<double> >() * vcd.asDiagonal());
// check inner product
VERIFY_IS_APPROX((vf.transpose() * vcf).value(), (vf.template cast<complex<float> >().transpose() * vcf).value());
// check outer product
VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast<complex<float> >() * vcf.transpose()).eval());
// coeff wise product
VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast<complex<float> >() * vcf.transpose()).eval());
Mat_cd mcd2 = mcd;
VERIFY_IS_APPROX(mcd.array() *= md.array(), mcd2.array() *= md.array().template cast<std::complex<double> >());
// check matrix-matrix products
VERIFY_IS_APPROX(sd*md*mcd, (sd*md).template cast<CD>().eval()*mcd);
VERIFY_IS_APPROX(sd*mcd*md, sd*mcd*md.template cast<CD>());
VERIFY_IS_APPROX(scd*md*mcd, scd*md.template cast<CD>().eval()*mcd);
VERIFY_IS_APPROX(scd*mcd*md, scd*mcd*md.template cast<CD>());
VERIFY_IS_APPROX(sf*mf*mcf, sf*mf.template cast<CF>()*mcf);
VERIFY_IS_APPROX(sf*mcf*mf, sf*mcf*mf.template cast<CF>());
VERIFY_IS_APPROX(scf*mf*mcf, scf*mf.template cast<CF>()*mcf);
VERIFY_IS_APPROX(scf*mcf*mf, scf*mcf*mf.template cast<CF>());
VERIFY_IS_APPROX(sd*md.adjoint()*mcd, (sd*md).template cast<CD>().eval().adjoint()*mcd);
VERIFY_IS_APPROX(sd*mcd.adjoint()*md, sd*mcd.adjoint()*md.template cast<CD>());
VERIFY_IS_APPROX(sd*md.adjoint()*mcd.adjoint(), (sd*md).template cast<CD>().eval().adjoint()*mcd.adjoint());
VERIFY_IS_APPROX(sd*mcd.adjoint()*md.adjoint(), sd*mcd.adjoint()*md.template cast<CD>().adjoint());
VERIFY_IS_APPROX(sd*md*mcd.adjoint(), (sd*md).template cast<CD>().eval()*mcd.adjoint());
VERIFY_IS_APPROX(sd*mcd*md.adjoint(), sd*mcd*md.template cast<CD>().adjoint());
VERIFY_IS_APPROX(sf*mf.adjoint()*mcf, (sf*mf).template cast<CF>().eval().adjoint()*mcf);
VERIFY_IS_APPROX(sf*mcf.adjoint()*mf, sf*mcf.adjoint()*mf.template cast<CF>());
VERIFY_IS_APPROX(sf*mf.adjoint()*mcf.adjoint(), (sf*mf).template cast<CF>().eval().adjoint()*mcf.adjoint());
VERIFY_IS_APPROX(sf*mcf.adjoint()*mf.adjoint(), sf*mcf.adjoint()*mf.template cast<CF>().adjoint());
VERIFY_IS_APPROX(sf*mf*mcf.adjoint(), (sf*mf).template cast<CF>().eval()*mcf.adjoint());
VERIFY_IS_APPROX(sf*mcf*mf.adjoint(), sf*mcf*mf.template cast<CF>().adjoint());
VERIFY_IS_APPROX(sf*mf*vcf, (sf*mf).template cast<CF>().eval()*vcf);
VERIFY_IS_APPROX(scf*mf*vcf,(scf*mf.template cast<CF>()).eval()*vcf);
VERIFY_IS_APPROX(sf*mcf*vf, sf*mcf*vf.template cast<CF>());
VERIFY_IS_APPROX(scf*mcf*vf,scf*mcf*vf.template cast<CF>());
VERIFY_IS_APPROX(sf*vcf.adjoint()*mf, sf*vcf.adjoint()*mf.template cast<CF>().eval());
VERIFY_IS_APPROX(scf*vcf.adjoint()*mf, scf*vcf.adjoint()*mf.template cast<CF>().eval());
VERIFY_IS_APPROX(sf*vf.adjoint()*mcf, sf*vf.adjoint().template cast<CF>().eval()*mcf);
VERIFY_IS_APPROX(scf*vf.adjoint()*mcf, scf*vf.adjoint().template cast<CF>().eval()*mcf);
VERIFY_IS_APPROX(sd*md*vcd, (sd*md).template cast<CD>().eval()*vcd);
VERIFY_IS_APPROX(scd*md*vcd,(scd*md.template cast<CD>()).eval()*vcd);
VERIFY_IS_APPROX(sd*mcd*vd, sd*mcd*vd.template cast<CD>().eval());
VERIFY_IS_APPROX(scd*mcd*vd,scd*mcd*vd.template cast<CD>().eval());
VERIFY_IS_APPROX(sd*vcd.adjoint()*md, sd*vcd.adjoint()*md.template cast<CD>().eval());
VERIFY_IS_APPROX(scd*vcd.adjoint()*md, scd*vcd.adjoint()*md.template cast<CD>().eval());
VERIFY_IS_APPROX(sd*vd.adjoint()*mcd, sd*vd.adjoint().template cast<CD>().eval()*mcd);
VERIFY_IS_APPROX(scd*vd.adjoint()*mcd, scd*vd.adjoint().template cast<CD>().eval()*mcd);
VERIFY_IS_APPROX( sd*vcd.adjoint()*md.template triangularView<Upper>(), sd*vcd.adjoint()*md.template cast<CD>().eval().template triangularView<Upper>());
VERIFY_IS_APPROX(scd*vcd.adjoint()*md.template triangularView<Lower>(), scd*vcd.adjoint()*md.template cast<CD>().eval().template triangularView<Lower>());
VERIFY_IS_APPROX( sd*vcd.adjoint()*md.transpose().template triangularView<Upper>(), sd*vcd.adjoint()*md.transpose().template cast<CD>().eval().template triangularView<Upper>());
VERIFY_IS_APPROX(scd*vcd.adjoint()*md.transpose().template triangularView<Lower>(), scd*vcd.adjoint()*md.transpose().template cast<CD>().eval().template triangularView<Lower>());
VERIFY_IS_APPROX( sd*vd.adjoint()*mcd.template triangularView<Lower>(), sd*vd.adjoint().template cast<CD>().eval()*mcd.template triangularView<Lower>());
VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.template triangularView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.template triangularView<Upper>());
VERIFY_IS_APPROX( sd*vd.adjoint()*mcd.transpose().template triangularView<Lower>(), sd*vd.adjoint().template cast<CD>().eval()*mcd.transpose().template triangularView<Lower>());
VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.transpose().template triangularView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.transpose().template triangularView<Upper>());
// Not supported yet: trmm
// VERIFY_IS_APPROX(sd*mcd*md.template triangularView<Lower>(), sd*mcd*md.template cast<CD>().eval().template triangularView<Lower>());
// VERIFY_IS_APPROX(scd*mcd*md.template triangularView<Upper>(), scd*mcd*md.template cast<CD>().eval().template triangularView<Upper>());
// VERIFY_IS_APPROX(sd*md*mcd.template triangularView<Lower>(), sd*md.template cast<CD>().eval()*mcd.template triangularView<Lower>());
// VERIFY_IS_APPROX(scd*md*mcd.template triangularView<Upper>(), scd*md.template cast<CD>().eval()*mcd.template triangularView<Upper>());
// Not supported yet: symv
// VERIFY_IS_APPROX(sd*vcd.adjoint()*md.template selfadjointView<Upper>(), sd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Upper>());
// VERIFY_IS_APPROX(scd*vcd.adjoint()*md.template selfadjointView<Lower>(), scd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Lower>());
// VERIFY_IS_APPROX(sd*vd.adjoint()*mcd.template selfadjointView<Lower>(), sd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Lower>());
// VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.template selfadjointView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Upper>());
// Not supported yet: symm
// VERIFY_IS_APPROX(sd*vcd.adjoint()*md.template selfadjointView<Upper>(), sd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Upper>());
// VERIFY_IS_APPROX(scd*vcd.adjoint()*md.template selfadjointView<Upper>(), scd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Upper>());
// VERIFY_IS_APPROX(sd*vd.adjoint()*mcd.template selfadjointView<Upper>(), sd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Upper>());
// VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.template selfadjointView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Upper>());
rcd.setZero();
VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = sd * mcd * md),
Mat_cd((sd * mcd * md.template cast<CD>().eval()).template triangularView<Upper>()));
VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = sd * md * mcd),
Mat_cd((sd * md.template cast<CD>().eval() * mcd).template triangularView<Upper>()));
VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = scd * mcd * md),
Mat_cd((scd * mcd * md.template cast<CD>().eval()).template triangularView<Upper>()));
VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = scd * md * mcd),
Mat_cd((scd * md.template cast<CD>().eval() * mcd).template triangularView<Upper>()));
VERIFY_IS_APPROX( md.array() * mcd.array(), md.template cast<CD>().eval().array() * mcd.array() );
VERIFY_IS_APPROX( mcd.array() * md.array(), mcd.array() * md.template cast<CD>().eval().array() );
VERIFY_IS_APPROX( md.array() + mcd.array(), md.template cast<CD>().eval().array() + mcd.array() );
VERIFY_IS_APPROX( mcd.array() + md.array(), mcd.array() + md.template cast<CD>().eval().array() );
VERIFY_IS_APPROX( md.array() - mcd.array(), md.template cast<CD>().eval().array() - mcd.array() );
VERIFY_IS_APPROX( mcd.array() - md.array(), mcd.array() - md.template cast<CD>().eval().array() );
if(mcd.array().abs().minCoeff()>epsd)
{
VERIFY_IS_APPROX( md.array() / mcd.array(), md.template cast<CD>().eval().array() / mcd.array() );
}
if(md.array().abs().minCoeff()>epsd)
{
VERIFY_IS_APPROX( mcd.array() / md.array(), mcd.array() / md.template cast<CD>().eval().array() );
}
if(md.array().abs().minCoeff()>epsd || mcd.array().abs().minCoeff()>epsd)
{
VERIFY_IS_APPROX( md.array().pow(mcd.array()), md.template cast<CD>().eval().array().pow(mcd.array()) );
VERIFY_IS_APPROX( mcd.array().pow(md.array()), mcd.array().pow(md.template cast<CD>().eval().array()) );
VERIFY_IS_APPROX( pow(md.array(),mcd.array()), md.template cast<CD>().eval().array().pow(mcd.array()) );
VERIFY_IS_APPROX( pow(mcd.array(),md.array()), mcd.array().pow(md.template cast<CD>().eval().array()) );
}
rcd = mcd;
VERIFY_IS_APPROX( rcd = md, md.template cast<CD>().eval() );
rcd = mcd;
VERIFY_IS_APPROX( rcd += md, mcd + md.template cast<CD>().eval() );
rcd = mcd;
VERIFY_IS_APPROX( rcd -= md, mcd - md.template cast<CD>().eval() );
rcd = mcd;
VERIFY_IS_APPROX( rcd.array() *= md.array(), mcd.array() * md.template cast<CD>().eval().array() );
rcd = mcd;
if(md.array().abs().minCoeff()>epsd)
{
VERIFY_IS_APPROX( rcd.array() /= md.array(), mcd.array() / md.template cast<CD>().eval().array() );
}
rcd = mcd;
VERIFY_IS_APPROX( rcd.noalias() += md + mcd*md, mcd + (md.template cast<CD>().eval()) + mcd*(md.template cast<CD>().eval()));
VERIFY_IS_APPROX( rcd.noalias() = md*md, ((md*md).eval().template cast<CD>()) );
rcd = mcd;
VERIFY_IS_APPROX( rcd.noalias() += md*md, mcd + ((md*md).eval().template cast<CD>()) );
rcd = mcd;
VERIFY_IS_APPROX( rcd.noalias() -= md*md, mcd - ((md*md).eval().template cast<CD>()) );
VERIFY_IS_APPROX( rcd.noalias() = mcd + md*md, mcd + ((md*md).eval().template cast<CD>()) );
rcd = mcd;
VERIFY_IS_APPROX( rcd.noalias() += mcd + md*md, mcd + mcd + ((md*md).eval().template cast<CD>()) );
rcd = mcd;
VERIFY_IS_APPROX( rcd.noalias() -= mcd + md*md, - ((md*md).eval().template cast<CD>()) );
}
EIGEN_DECLARE_TEST(mixingtypes)
{
g_called = false; // Silence -Wunneeded-internal-declaration.
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1(mixingtypes<3>());
CALL_SUBTEST_2(mixingtypes<4>());
CALL_SUBTEST_3(mixingtypes<Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)));
CALL_SUBTEST_4(mixingtypes<3>());
CALL_SUBTEST_5(mixingtypes<4>());
CALL_SUBTEST_6(mixingtypes<Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)));
CALL_SUBTEST_7(raise_assertion<Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)));
}
CALL_SUBTEST_7(raise_assertion<0>());
CALL_SUBTEST_7(raise_assertion<3>());
CALL_SUBTEST_7(raise_assertion<4>());
CALL_SUBTEST_7(raise_assertion<Dynamic>(0));
}
|