1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010-2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
// Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
template<typename MatrixType>
bool equalsIdentity(const MatrixType& A)
{
typedef typename MatrixType::Scalar Scalar;
Scalar zero = static_cast<Scalar>(0);
bool offDiagOK = true;
for (Index i = 0; i < A.rows(); ++i) {
for (Index j = i+1; j < A.cols(); ++j) {
offDiagOK = offDiagOK && (A(i,j) == zero);
}
}
for (Index i = 0; i < A.rows(); ++i) {
for (Index j = 0; j < (std::min)(i, A.cols()); ++j) {
offDiagOK = offDiagOK && (A(i,j) == zero);
}
}
bool diagOK = (A.diagonal().array() == 1).all();
return offDiagOK && diagOK;
}
template<typename VectorType>
void check_extremity_accuracy(const VectorType &v, const typename VectorType::Scalar &low, const typename VectorType::Scalar &high)
{
typedef typename VectorType::Scalar Scalar;
typedef typename VectorType::RealScalar RealScalar;
RealScalar prec = internal::is_same<RealScalar,float>::value ? NumTraits<RealScalar>::dummy_precision()*10 : NumTraits<RealScalar>::dummy_precision()/10;
Index size = v.size();
if(size<20)
return;
for (int i=0; i<size; ++i)
{
if(i<5 || i>size-6)
{
Scalar ref = (low*RealScalar(size-i-1))/RealScalar(size-1) + (high*RealScalar(i))/RealScalar(size-1);
if(std::abs(ref)>1)
{
if(!internal::isApprox(v(i), ref, prec))
std::cout << v(i) << " != " << ref << " ; relative error: " << std::abs((v(i)-ref)/ref) << " ; required precision: " << prec << " ; range: " << low << "," << high << " ; i: " << i << "\n";
VERIFY(internal::isApprox(v(i), (low*RealScalar(size-i-1))/RealScalar(size-1) + (high*RealScalar(i))/RealScalar(size-1), prec));
}
}
}
}
template<typename VectorType>
void testVectorType(const VectorType& base)
{
typedef typename VectorType::Scalar Scalar;
typedef typename VectorType::RealScalar RealScalar;
const Index size = base.size();
Scalar high = internal::random<Scalar>(-500,500);
Scalar low = (size == 1 ? high : internal::random<Scalar>(-500,500));
if (numext::real(low)>numext::real(high)) std::swap(low,high);
// check low==high
if(internal::random<float>(0.f,1.f)<0.05f)
low = high;
// check abs(low) >> abs(high)
else if(size>2 && std::numeric_limits<RealScalar>::max_exponent10>0 && internal::random<float>(0.f,1.f)<0.1f)
low = -internal::random<Scalar>(1,2) * RealScalar(std::pow(RealScalar(10),std::numeric_limits<RealScalar>::max_exponent10/2));
const Scalar step = ((size == 1) ? 1 : (high-low)/RealScalar(size-1));
// check whether the result yields what we expect it to do
VectorType m(base);
m.setLinSpaced(size,low,high);
if(!NumTraits<Scalar>::IsInteger)
{
VectorType n(size);
for (int i=0; i<size; ++i)
n(i) = low+RealScalar(i)*step;
VERIFY_IS_APPROX(m,n);
CALL_SUBTEST( check_extremity_accuracy(m, low, high) );
}
RealScalar range_length = numext::real(high-low);
if((!NumTraits<Scalar>::IsInteger) || (range_length>=size && (Index(range_length)%(size-1))==0) || (Index(range_length+1)<size && (size%Index(range_length+1))==0))
{
VectorType n(size);
if((!NumTraits<Scalar>::IsInteger) || (range_length>=size))
for (int i=0; i<size; ++i)
n(i) = size==1 ? low : (low + ((high-low)*Scalar(i))/RealScalar(size-1));
else
for (int i=0; i<size; ++i)
n(i) = size==1 ? low : low + Scalar((double(range_length+1)*double(i))/double(size));
VERIFY_IS_APPROX(m,n);
// random access version
m = VectorType::LinSpaced(size,low,high);
VERIFY_IS_APPROX(m,n);
VERIFY( internal::isApprox(m(m.size()-1),high) );
VERIFY( size==1 || internal::isApprox(m(0),low) );
VERIFY_IS_EQUAL(m(m.size()-1) , high);
if(!NumTraits<Scalar>::IsInteger)
CALL_SUBTEST( check_extremity_accuracy(m, low, high) );
}
VERIFY( numext::real(m(m.size()-1)) <= numext::real(high) );
VERIFY( (m.array().real() <= numext::real(high)).all() );
VERIFY( (m.array().real() >= numext::real(low)).all() );
VERIFY( numext::real(m(m.size()-1)) >= numext::real(low) );
if(size>=1)
{
VERIFY( internal::isApprox(m(0),low) );
VERIFY_IS_EQUAL(m(0) , low);
}
// check whether everything works with row and col major vectors
Matrix<Scalar,Dynamic,1> row_vector(size);
Matrix<Scalar,1,Dynamic> col_vector(size);
row_vector.setLinSpaced(size,low,high);
col_vector.setLinSpaced(size,low,high);
// when using the extended precision (e.g., FPU) the relative error might exceed 1 bit
// when computing the squared sum in isApprox, thus the 2x factor.
VERIFY( row_vector.isApprox(col_vector.transpose(), RealScalar(2)*NumTraits<Scalar>::epsilon()));
Matrix<Scalar,Dynamic,1> size_changer(size+50);
size_changer.setLinSpaced(size,low,high);
VERIFY( size_changer.size() == size );
typedef Matrix<Scalar,1,1> ScalarMatrix;
ScalarMatrix scalar;
scalar.setLinSpaced(1,low,high);
VERIFY_IS_APPROX( scalar, ScalarMatrix::Constant(high) );
VERIFY_IS_APPROX( ScalarMatrix::LinSpaced(1,low,high), ScalarMatrix::Constant(high) );
// regression test for bug 526 (linear vectorized transversal)
if (size > 1 && (!NumTraits<Scalar>::IsInteger)) {
m.tail(size-1).setLinSpaced(low, high);
VERIFY_IS_APPROX(m(size-1), high);
}
// regression test for bug 1383 (LinSpaced with empty size/range)
{
Index n0 = VectorType::SizeAtCompileTime==Dynamic ? 0 : VectorType::SizeAtCompileTime;
low = internal::random<Scalar>();
m = VectorType::LinSpaced(n0,low,low-RealScalar(1));
VERIFY(m.size()==n0);
if(VectorType::SizeAtCompileTime==Dynamic)
{
VERIFY_IS_EQUAL(VectorType::LinSpaced(n0,0,Scalar(n0-1)).sum(),Scalar(0));
VERIFY_IS_EQUAL(VectorType::LinSpaced(n0,low,low-RealScalar(1)).sum(),Scalar(0));
}
m.setLinSpaced(n0,0,Scalar(n0-1));
VERIFY(m.size()==n0);
m.setLinSpaced(n0,low,low-RealScalar(1));
VERIFY(m.size()==n0);
// empty range only:
VERIFY_IS_APPROX(VectorType::LinSpaced(size,low,low),VectorType::Constant(size,low));
m.setLinSpaced(size,low,low);
VERIFY_IS_APPROX(m,VectorType::Constant(size,low));
if(NumTraits<Scalar>::IsInteger)
{
VERIFY_IS_APPROX( VectorType::LinSpaced(size,low,low+Scalar(size-1)), VectorType::LinSpaced(size,low+Scalar(size-1),low).reverse() );
if(VectorType::SizeAtCompileTime==Dynamic)
{
// Check negative multiplicator path:
for(Index k=1; k<5; ++k)
VERIFY_IS_APPROX( VectorType::LinSpaced(size,low,low+Scalar((size-1)*k)), VectorType::LinSpaced(size,low+Scalar((size-1)*k),low).reverse() );
// Check negative divisor path:
for(Index k=1; k<5; ++k)
VERIFY_IS_APPROX( VectorType::LinSpaced(size*k,low,low+Scalar(size-1)), VectorType::LinSpaced(size*k,low+Scalar(size-1),low).reverse() );
}
}
}
// test setUnit()
if(m.size()>0)
{
for(Index k=0; k<10; ++k)
{
Index i = internal::random<Index>(0,m.size()-1);
m.setUnit(i);
VERIFY_IS_APPROX( m, VectorType::Unit(m.size(), i) );
}
if(VectorType::SizeAtCompileTime==Dynamic)
{
Index i = internal::random<Index>(0,2*m.size()-1);
m.setUnit(2*m.size(),i);
VERIFY_IS_APPROX( m, VectorType::Unit(m.size(),i) );
}
}
}
template<typename MatrixType>
void testMatrixType(const MatrixType& m)
{
using std::abs;
const Index rows = m.rows();
const Index cols = m.cols();
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
Scalar s1;
do {
s1 = internal::random<Scalar>();
} while(abs(s1)<RealScalar(1e-5) && (!NumTraits<Scalar>::IsInteger));
MatrixType A;
A.setIdentity(rows, cols);
VERIFY(equalsIdentity(A));
VERIFY(equalsIdentity(MatrixType::Identity(rows, cols)));
A = MatrixType::Constant(rows,cols,s1);
Index i = internal::random<Index>(0,rows-1);
Index j = internal::random<Index>(0,cols-1);
VERIFY_IS_APPROX( MatrixType::Constant(rows,cols,s1)(i,j), s1 );
VERIFY_IS_APPROX( MatrixType::Constant(rows,cols,s1).coeff(i,j), s1 );
VERIFY_IS_APPROX( A(i,j), s1 );
}
template<int>
void bug79()
{
// Assignment of a RowVectorXd to a MatrixXd (regression test for bug #79).
VERIFY( (MatrixXd(RowVectorXd::LinSpaced(3, 0, 1)) - RowVector3d(0, 0.5, 1)).norm() < std::numeric_limits<double>::epsilon() );
}
template<int>
void bug1630()
{
Array4d x4 = Array4d::LinSpaced(0.0, 1.0);
Array3d x3(Array4d::LinSpaced(0.0, 1.0).head(3));
VERIFY_IS_APPROX(x4.head(3), x3);
}
template<int>
void nullary_overflow()
{
// Check possible overflow issue
int n = 60000;
ArrayXi a1(n), a2(n);
a1.setLinSpaced(n, 0, n-1);
for(int i=0; i<n; ++i)
a2(i) = i;
VERIFY_IS_APPROX(a1,a2);
}
template<int>
void nullary_internal_logic()
{
// check some internal logic
VERIFY(( internal::has_nullary_operator<internal::scalar_constant_op<double> >::value ));
VERIFY(( !internal::has_unary_operator<internal::scalar_constant_op<double> >::value ));
VERIFY(( !internal::has_binary_operator<internal::scalar_constant_op<double> >::value ));
VERIFY(( internal::functor_has_linear_access<internal::scalar_constant_op<double> >::ret ));
VERIFY(( !internal::has_nullary_operator<internal::scalar_identity_op<double> >::value ));
VERIFY(( !internal::has_unary_operator<internal::scalar_identity_op<double> >::value ));
VERIFY(( internal::has_binary_operator<internal::scalar_identity_op<double> >::value ));
VERIFY(( !internal::functor_has_linear_access<internal::scalar_identity_op<double> >::ret ));
VERIFY(( !internal::has_nullary_operator<internal::linspaced_op<float> >::value ));
VERIFY(( internal::has_unary_operator<internal::linspaced_op<float> >::value ));
VERIFY(( !internal::has_binary_operator<internal::linspaced_op<float> >::value ));
VERIFY(( internal::functor_has_linear_access<internal::linspaced_op<float> >::ret ));
// Regression unit test for a weird MSVC bug.
// Search "nullary_wrapper_workaround_msvc" in CoreEvaluators.h for the details.
// See also traits<Ref>::match.
{
MatrixXf A = MatrixXf::Random(3,3);
Ref<const MatrixXf> R = 2.0*A;
VERIFY_IS_APPROX(R, A+A);
Ref<const MatrixXf> R1 = MatrixXf::Random(3,3)+A;
VectorXi V = VectorXi::Random(3);
Ref<const VectorXi> R2 = VectorXi::LinSpaced(3,1,3)+V;
VERIFY_IS_APPROX(R2, V+Vector3i(1,2,3));
VERIFY(( internal::has_nullary_operator<internal::scalar_constant_op<float> >::value ));
VERIFY(( !internal::has_unary_operator<internal::scalar_constant_op<float> >::value ));
VERIFY(( !internal::has_binary_operator<internal::scalar_constant_op<float> >::value ));
VERIFY(( internal::functor_has_linear_access<internal::scalar_constant_op<float> >::ret ));
VERIFY(( !internal::has_nullary_operator<internal::linspaced_op<int> >::value ));
VERIFY(( internal::has_unary_operator<internal::linspaced_op<int> >::value ));
VERIFY(( !internal::has_binary_operator<internal::linspaced_op<int> >::value ));
VERIFY(( internal::functor_has_linear_access<internal::linspaced_op<int> >::ret ));
}
}
EIGEN_DECLARE_TEST(nullary)
{
CALL_SUBTEST_1( testMatrixType(Matrix2d()) );
CALL_SUBTEST_2( testMatrixType(MatrixXcf(internal::random<int>(1,300),internal::random<int>(1,300))) );
CALL_SUBTEST_3( testMatrixType(MatrixXf(internal::random<int>(1,300),internal::random<int>(1,300))) );
for(int i = 0; i < g_repeat*10; i++) {
CALL_SUBTEST_3( testVectorType(VectorXcd(internal::random<int>(1,30000))) );
CALL_SUBTEST_4( testVectorType(VectorXd(internal::random<int>(1,30000))) );
CALL_SUBTEST_5( testVectorType(Vector4d()) ); // regression test for bug 232
CALL_SUBTEST_6( testVectorType(Vector3d()) );
CALL_SUBTEST_7( testVectorType(VectorXf(internal::random<int>(1,30000))) );
CALL_SUBTEST_8( testVectorType(Vector3f()) );
CALL_SUBTEST_8( testVectorType(Vector4f()) );
CALL_SUBTEST_8( testVectorType(Matrix<float,8,1>()) );
CALL_SUBTEST_8( testVectorType(Matrix<float,1,1>()) );
CALL_SUBTEST_9( testVectorType(VectorXi(internal::random<int>(1,10))) );
CALL_SUBTEST_9( testVectorType(VectorXi(internal::random<int>(9,300))) );
CALL_SUBTEST_9( testVectorType(Matrix<int,1,1>()) );
}
CALL_SUBTEST_6( bug79<0>() );
CALL_SUBTEST_6( bug1630<0>() );
CALL_SUBTEST_9( nullary_overflow<0>() );
CALL_SUBTEST_10( nullary_internal_logic<0>() );
}
|