1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2017 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
template<typename T, typename U>
bool check_if_equal_or_nans(const T& actual, const U& expected) {
return ((actual == expected) || ((numext::isnan)(actual) && (numext::isnan)(expected)));
}
template<typename T, typename U>
bool check_if_equal_or_nans(const std::complex<T>& actual, const std::complex<U>& expected) {
return check_if_equal_or_nans(numext::real(actual), numext::real(expected))
&& check_if_equal_or_nans(numext::imag(actual), numext::imag(expected));
}
template<typename T, typename U>
bool test_is_equal_or_nans(const T& actual, const U& expected)
{
if (check_if_equal_or_nans(actual, expected)) {
return true;
}
// false:
std::cerr
<< "\n actual = " << actual
<< "\n expected = " << expected << "\n\n";
return false;
}
#define VERIFY_IS_EQUAL_OR_NANS(a, b) VERIFY(test_is_equal_or_nans(a, b))
template<typename T>
void check_abs() {
typedef typename NumTraits<T>::Real Real;
Real zero(0);
if(NumTraits<T>::IsSigned)
VERIFY_IS_EQUAL(numext::abs(-T(1)), T(1));
VERIFY_IS_EQUAL(numext::abs(T(0)), T(0));
VERIFY_IS_EQUAL(numext::abs(T(1)), T(1));
for(int k=0; k<100; ++k)
{
T x = internal::random<T>();
if(!internal::is_same<T,bool>::value)
x = x/Real(2);
if(NumTraits<T>::IsSigned)
{
VERIFY_IS_EQUAL(numext::abs(x), numext::abs(-x));
VERIFY( numext::abs(-x) >= zero );
}
VERIFY( numext::abs(x) >= zero );
VERIFY_IS_APPROX( numext::abs2(x), numext::abs2(numext::abs(x)) );
}
}
template<typename T>
void check_arg() {
typedef typename NumTraits<T>::Real Real;
VERIFY_IS_EQUAL(numext::abs(T(0)), T(0));
VERIFY_IS_EQUAL(numext::abs(T(1)), T(1));
for(int k=0; k<100; ++k)
{
T x = internal::random<T>();
Real y = numext::arg(x);
VERIFY_IS_APPROX( y, std::arg(x) );
}
}
template<typename T>
struct check_sqrt_impl {
static void run() {
for (int i=0; i<1000; ++i) {
const T x = numext::abs(internal::random<T>());
const T sqrtx = numext::sqrt(x);
VERIFY_IS_APPROX(sqrtx*sqrtx, x);
}
// Corner cases.
const T zero = T(0);
const T one = T(1);
const T inf = std::numeric_limits<T>::infinity();
const T nan = std::numeric_limits<T>::quiet_NaN();
VERIFY_IS_EQUAL(numext::sqrt(zero), zero);
VERIFY_IS_EQUAL(numext::sqrt(inf), inf);
VERIFY((numext::isnan)(numext::sqrt(nan)));
VERIFY((numext::isnan)(numext::sqrt(-one)));
}
};
template<typename T>
struct check_sqrt_impl<std::complex<T> > {
static void run() {
typedef typename std::complex<T> ComplexT;
for (int i=0; i<1000; ++i) {
const ComplexT x = internal::random<ComplexT>();
const ComplexT sqrtx = numext::sqrt(x);
VERIFY_IS_APPROX(sqrtx*sqrtx, x);
}
// Corner cases.
const T zero = T(0);
const T one = T(1);
const T inf = std::numeric_limits<T>::infinity();
const T nan = std::numeric_limits<T>::quiet_NaN();
// Set of corner cases from https://en.cppreference.com/w/cpp/numeric/complex/sqrt
const int kNumCorners = 20;
const ComplexT corners[kNumCorners][2] = {
{ComplexT(zero, zero), ComplexT(zero, zero)},
{ComplexT(-zero, zero), ComplexT(zero, zero)},
{ComplexT(zero, -zero), ComplexT(zero, zero)},
{ComplexT(-zero, -zero), ComplexT(zero, zero)},
{ComplexT(one, inf), ComplexT(inf, inf)},
{ComplexT(nan, inf), ComplexT(inf, inf)},
{ComplexT(one, -inf), ComplexT(inf, -inf)},
{ComplexT(nan, -inf), ComplexT(inf, -inf)},
{ComplexT(-inf, one), ComplexT(zero, inf)},
{ComplexT(inf, one), ComplexT(inf, zero)},
{ComplexT(-inf, -one), ComplexT(zero, -inf)},
{ComplexT(inf, -one), ComplexT(inf, -zero)},
{ComplexT(-inf, nan), ComplexT(nan, inf)},
{ComplexT(inf, nan), ComplexT(inf, nan)},
{ComplexT(zero, nan), ComplexT(nan, nan)},
{ComplexT(one, nan), ComplexT(nan, nan)},
{ComplexT(nan, zero), ComplexT(nan, nan)},
{ComplexT(nan, one), ComplexT(nan, nan)},
{ComplexT(nan, -one), ComplexT(nan, nan)},
{ComplexT(nan, nan), ComplexT(nan, nan)},
};
for (int i=0; i<kNumCorners; ++i) {
const ComplexT& x = corners[i][0];
const ComplexT sqrtx = corners[i][1];
VERIFY_IS_EQUAL_OR_NANS(numext::sqrt(x), sqrtx);
}
}
};
template<typename T>
void check_sqrt() {
check_sqrt_impl<T>::run();
}
template<typename T>
struct check_rsqrt_impl {
static void run() {
const T zero = T(0);
const T one = T(1);
const T inf = std::numeric_limits<T>::infinity();
const T nan = std::numeric_limits<T>::quiet_NaN();
for (int i=0; i<1000; ++i) {
const T x = numext::abs(internal::random<T>());
const T rsqrtx = numext::rsqrt(x);
const T invx = one / x;
VERIFY_IS_APPROX(rsqrtx*rsqrtx, invx);
}
// Corner cases.
VERIFY_IS_EQUAL(numext::rsqrt(zero), inf);
VERIFY_IS_EQUAL(numext::rsqrt(inf), zero);
VERIFY((numext::isnan)(numext::rsqrt(nan)));
VERIFY((numext::isnan)(numext::rsqrt(-one)));
}
};
template<typename T>
struct check_rsqrt_impl<std::complex<T> > {
static void run() {
typedef typename std::complex<T> ComplexT;
const T zero = T(0);
const T one = T(1);
const T inf = std::numeric_limits<T>::infinity();
const T nan = std::numeric_limits<T>::quiet_NaN();
for (int i=0; i<1000; ++i) {
const ComplexT x = internal::random<ComplexT>();
const ComplexT invx = ComplexT(one, zero) / x;
const ComplexT rsqrtx = numext::rsqrt(x);
VERIFY_IS_APPROX(rsqrtx*rsqrtx, invx);
}
// GCC and MSVC differ in their treatment of 1/(0 + 0i)
// GCC/clang = (inf, nan)
// MSVC = (nan, nan)
// and 1 / (x + inf i)
// GCC/clang = (0, 0)
// MSVC = (nan, nan)
#if (EIGEN_COMP_GNUC)
{
const int kNumCorners = 20;
const ComplexT corners[kNumCorners][2] = {
// Only consistent across GCC, clang
{ComplexT(zero, zero), ComplexT(zero, zero)},
{ComplexT(-zero, zero), ComplexT(zero, zero)},
{ComplexT(zero, -zero), ComplexT(zero, zero)},
{ComplexT(-zero, -zero), ComplexT(zero, zero)},
{ComplexT(one, inf), ComplexT(inf, inf)},
{ComplexT(nan, inf), ComplexT(inf, inf)},
{ComplexT(one, -inf), ComplexT(inf, -inf)},
{ComplexT(nan, -inf), ComplexT(inf, -inf)},
// Consistent across GCC, clang, MSVC
{ComplexT(-inf, one), ComplexT(zero, inf)},
{ComplexT(inf, one), ComplexT(inf, zero)},
{ComplexT(-inf, -one), ComplexT(zero, -inf)},
{ComplexT(inf, -one), ComplexT(inf, -zero)},
{ComplexT(-inf, nan), ComplexT(nan, inf)},
{ComplexT(inf, nan), ComplexT(inf, nan)},
{ComplexT(zero, nan), ComplexT(nan, nan)},
{ComplexT(one, nan), ComplexT(nan, nan)},
{ComplexT(nan, zero), ComplexT(nan, nan)},
{ComplexT(nan, one), ComplexT(nan, nan)},
{ComplexT(nan, -one), ComplexT(nan, nan)},
{ComplexT(nan, nan), ComplexT(nan, nan)},
};
for (int i=0; i<kNumCorners; ++i) {
const ComplexT& x = corners[i][0];
const ComplexT rsqrtx = ComplexT(one, zero) / corners[i][1];
VERIFY_IS_EQUAL_OR_NANS(numext::rsqrt(x), rsqrtx);
}
}
#endif
}
};
template<typename T>
void check_rsqrt() {
check_rsqrt_impl<T>::run();
}
EIGEN_DECLARE_TEST(numext) {
for(int k=0; k<g_repeat; ++k)
{
CALL_SUBTEST( check_abs<bool>() );
CALL_SUBTEST( check_abs<signed char>() );
CALL_SUBTEST( check_abs<unsigned char>() );
CALL_SUBTEST( check_abs<short>() );
CALL_SUBTEST( check_abs<unsigned short>() );
CALL_SUBTEST( check_abs<int>() );
CALL_SUBTEST( check_abs<unsigned int>() );
CALL_SUBTEST( check_abs<long>() );
CALL_SUBTEST( check_abs<unsigned long>() );
CALL_SUBTEST( check_abs<half>() );
CALL_SUBTEST( check_abs<bfloat16>() );
CALL_SUBTEST( check_abs<float>() );
CALL_SUBTEST( check_abs<double>() );
CALL_SUBTEST( check_abs<long double>() );
CALL_SUBTEST( check_abs<std::complex<float> >() );
CALL_SUBTEST( check_abs<std::complex<double> >() );
CALL_SUBTEST( check_arg<std::complex<float> >() );
CALL_SUBTEST( check_arg<std::complex<double> >() );
CALL_SUBTEST( check_sqrt<float>() );
CALL_SUBTEST( check_sqrt<double>() );
CALL_SUBTEST( check_sqrt<std::complex<float> >() );
CALL_SUBTEST( check_sqrt<std::complex<double> >() );
CALL_SUBTEST( check_rsqrt<float>() );
CALL_SUBTEST( check_rsqrt<double>() );
CALL_SUBTEST( check_rsqrt<std::complex<float> >() );
CALL_SUBTEST( check_rsqrt<std::complex<double> >() );
}
}
|