1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/QR>
#include "solverbase.h"
template<typename MatrixType> void qr(const MatrixType& m)
{
Index rows = m.rows();
Index cols = m.cols();
typedef typename MatrixType::Scalar Scalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixQType;
MatrixType a = MatrixType::Random(rows,cols);
HouseholderQR<MatrixType> qrOfA(a);
MatrixQType q = qrOfA.householderQ();
VERIFY_IS_UNITARY(q);
MatrixType r = qrOfA.matrixQR().template triangularView<Upper>();
VERIFY_IS_APPROX(a, qrOfA.householderQ() * r);
}
template<typename MatrixType, int Cols2> void qr_fixedsize()
{
enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
typedef typename MatrixType::Scalar Scalar;
Matrix<Scalar,Rows,Cols> m1 = Matrix<Scalar,Rows,Cols>::Random();
HouseholderQR<Matrix<Scalar,Rows,Cols> > qr(m1);
Matrix<Scalar,Rows,Cols> r = qr.matrixQR();
// FIXME need better way to construct trapezoid
for(int i = 0; i < Rows; i++) for(int j = 0; j < Cols; j++) if(i>j) r(i,j) = Scalar(0);
VERIFY_IS_APPROX(m1, qr.householderQ() * r);
check_solverbase<Matrix<Scalar,Cols,Cols2>, Matrix<Scalar,Rows,Cols2> >(m1, qr, Rows, Cols, Cols2);
}
template<typename MatrixType> void qr_invertible()
{
using std::log;
using std::abs;
using std::pow;
using std::max;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef typename MatrixType::Scalar Scalar;
STATIC_CHECK(( internal::is_same<typename HouseholderQR<MatrixType>::StorageIndex,int>::value ));
int size = internal::random<int>(10,50);
MatrixType m1(size, size), m2(size, size), m3(size, size);
m1 = MatrixType::Random(size,size);
if (internal::is_same<RealScalar,float>::value)
{
// let's build a matrix more stable to inverse
MatrixType a = MatrixType::Random(size,size*4);
m1 += a * a.adjoint();
}
HouseholderQR<MatrixType> qr(m1);
check_solverbase<MatrixType, MatrixType>(m1, qr, size, size, size);
// now construct a matrix with prescribed determinant
m1.setZero();
for(int i = 0; i < size; i++) m1(i,i) = internal::random<Scalar>();
RealScalar absdet = abs(m1.diagonal().prod());
m3 = qr.householderQ(); // get a unitary
m1 = m3 * m1 * m3;
qr.compute(m1);
VERIFY_IS_APPROX(log(absdet), qr.logAbsDeterminant());
// This test is tricky if the determinant becomes too small.
// Since we generate random numbers with magnitude range [0,1], the average determinant is 0.5^size
VERIFY_IS_MUCH_SMALLER_THAN( abs(absdet-qr.absDeterminant()), numext::maxi(RealScalar(pow(0.5,size)),numext::maxi<RealScalar>(abs(absdet),abs(qr.absDeterminant()))) );
}
template<typename MatrixType> void qr_verify_assert()
{
MatrixType tmp;
HouseholderQR<MatrixType> qr;
VERIFY_RAISES_ASSERT(qr.matrixQR())
VERIFY_RAISES_ASSERT(qr.solve(tmp))
VERIFY_RAISES_ASSERT(qr.transpose().solve(tmp))
VERIFY_RAISES_ASSERT(qr.adjoint().solve(tmp))
VERIFY_RAISES_ASSERT(qr.householderQ())
VERIFY_RAISES_ASSERT(qr.absDeterminant())
VERIFY_RAISES_ASSERT(qr.logAbsDeterminant())
}
EIGEN_DECLARE_TEST(qr)
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( qr(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
CALL_SUBTEST_2( qr(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2),internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
CALL_SUBTEST_3(( qr_fixedsize<Matrix<float,3,4>, 2 >() ));
CALL_SUBTEST_4(( qr_fixedsize<Matrix<double,6,2>, 4 >() ));
CALL_SUBTEST_5(( qr_fixedsize<Matrix<double,2,5>, 7 >() ));
CALL_SUBTEST_11( qr(Matrix<float,1,1>()) );
}
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( qr_invertible<MatrixXf>() );
CALL_SUBTEST_6( qr_invertible<MatrixXd>() );
CALL_SUBTEST_7( qr_invertible<MatrixXcf>() );
CALL_SUBTEST_8( qr_invertible<MatrixXcd>() );
}
CALL_SUBTEST_9(qr_verify_assert<Matrix3f>());
CALL_SUBTEST_10(qr_verify_assert<Matrix3d>());
CALL_SUBTEST_1(qr_verify_assert<MatrixXf>());
CALL_SUBTEST_6(qr_verify_assert<MatrixXd>());
CALL_SUBTEST_7(qr_verify_assert<MatrixXcf>());
CALL_SUBTEST_8(qr_verify_assert<MatrixXcd>());
// Test problem size constructors
CALL_SUBTEST_12(HouseholderQR<MatrixXf>(10, 20));
}
|