1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/QR>
#include <Eigen/SVD>
#include "solverbase.h"
template <typename MatrixType>
void cod() {
STATIC_CHECK(( internal::is_same<typename CompleteOrthogonalDecomposition<MatrixType>::StorageIndex,int>::value ));
Index rows = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE);
Index cols = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE);
Index cols2 = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE);
Index rank = internal::random<Index>(1, (std::min)(rows, cols) - 1);
typedef typename MatrixType::Scalar Scalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime,
MatrixType::RowsAtCompileTime>
MatrixQType;
MatrixType matrix;
createRandomPIMatrixOfRank(rank, rows, cols, matrix);
CompleteOrthogonalDecomposition<MatrixType> cod(matrix);
VERIFY(rank == cod.rank());
VERIFY(cols - cod.rank() == cod.dimensionOfKernel());
VERIFY(!cod.isInjective());
VERIFY(!cod.isInvertible());
VERIFY(!cod.isSurjective());
MatrixQType q = cod.householderQ();
VERIFY_IS_UNITARY(q);
MatrixType z = cod.matrixZ();
VERIFY_IS_UNITARY(z);
MatrixType t;
t.setZero(rows, cols);
t.topLeftCorner(rank, rank) =
cod.matrixT().topLeftCorner(rank, rank).template triangularView<Upper>();
MatrixType c = q * t * z * cod.colsPermutation().inverse();
VERIFY_IS_APPROX(matrix, c);
check_solverbase<MatrixType, MatrixType>(matrix, cod, rows, cols, cols2);
// Verify that we get the same minimum-norm solution as the SVD.
MatrixType exact_solution = MatrixType::Random(cols, cols2);
MatrixType rhs = matrix * exact_solution;
MatrixType cod_solution = cod.solve(rhs);
JacobiSVD<MatrixType> svd(matrix, ComputeThinU | ComputeThinV);
MatrixType svd_solution = svd.solve(rhs);
VERIFY_IS_APPROX(cod_solution, svd_solution);
MatrixType pinv = cod.pseudoInverse();
VERIFY_IS_APPROX(cod_solution, pinv * rhs);
}
template <typename MatrixType, int Cols2>
void cod_fixedsize() {
enum {
Rows = MatrixType::RowsAtCompileTime,
Cols = MatrixType::ColsAtCompileTime
};
typedef typename MatrixType::Scalar Scalar;
typedef CompleteOrthogonalDecomposition<Matrix<Scalar, Rows, Cols> > COD;
int rank = internal::random<int>(1, (std::min)(int(Rows), int(Cols)) - 1);
Matrix<Scalar, Rows, Cols> matrix;
createRandomPIMatrixOfRank(rank, Rows, Cols, matrix);
COD cod(matrix);
VERIFY(rank == cod.rank());
VERIFY(Cols - cod.rank() == cod.dimensionOfKernel());
VERIFY(cod.isInjective() == (rank == Rows));
VERIFY(cod.isSurjective() == (rank == Cols));
VERIFY(cod.isInvertible() == (cod.isInjective() && cod.isSurjective()));
check_solverbase<Matrix<Scalar, Cols, Cols2>, Matrix<Scalar, Rows, Cols2> >(matrix, cod, Rows, Cols, Cols2);
// Verify that we get the same minimum-norm solution as the SVD.
Matrix<Scalar, Cols, Cols2> exact_solution;
exact_solution.setRandom(Cols, Cols2);
Matrix<Scalar, Rows, Cols2> rhs = matrix * exact_solution;
Matrix<Scalar, Cols, Cols2> cod_solution = cod.solve(rhs);
JacobiSVD<MatrixType> svd(matrix, ComputeFullU | ComputeFullV);
Matrix<Scalar, Cols, Cols2> svd_solution = svd.solve(rhs);
VERIFY_IS_APPROX(cod_solution, svd_solution);
typename Inverse<COD>::PlainObject pinv = cod.pseudoInverse();
VERIFY_IS_APPROX(cod_solution, pinv * rhs);
}
template<typename MatrixType> void qr()
{
using std::sqrt;
STATIC_CHECK(( internal::is_same<typename ColPivHouseholderQR<MatrixType>::StorageIndex,int>::value ));
Index rows = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE), cols = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE), cols2 = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE);
Index rank = internal::random<Index>(1, (std::min)(rows, cols)-1);
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixQType;
MatrixType m1;
createRandomPIMatrixOfRank(rank,rows,cols,m1);
ColPivHouseholderQR<MatrixType> qr(m1);
VERIFY_IS_EQUAL(rank, qr.rank());
VERIFY_IS_EQUAL(cols - qr.rank(), qr.dimensionOfKernel());
VERIFY(!qr.isInjective());
VERIFY(!qr.isInvertible());
VERIFY(!qr.isSurjective());
MatrixQType q = qr.householderQ();
VERIFY_IS_UNITARY(q);
MatrixType r = qr.matrixQR().template triangularView<Upper>();
MatrixType c = q * r * qr.colsPermutation().inverse();
VERIFY_IS_APPROX(m1, c);
// Verify that the absolute value of the diagonal elements in R are
// non-increasing until they reach the singularity threshold.
RealScalar threshold =
sqrt(RealScalar(rows)) * numext::abs(r(0, 0)) * NumTraits<Scalar>::epsilon();
for (Index i = 0; i < (std::min)(rows, cols) - 1; ++i) {
RealScalar x = numext::abs(r(i, i));
RealScalar y = numext::abs(r(i + 1, i + 1));
if (x < threshold && y < threshold) continue;
if (!test_isApproxOrLessThan(y, x)) {
for (Index j = 0; j < (std::min)(rows, cols); ++j) {
std::cout << "i = " << j << ", |r_ii| = " << numext::abs(r(j, j)) << std::endl;
}
std::cout << "Failure at i=" << i << ", rank=" << rank
<< ", threshold=" << threshold << std::endl;
}
VERIFY_IS_APPROX_OR_LESS_THAN(y, x);
}
check_solverbase<MatrixType, MatrixType>(m1, qr, rows, cols, cols2);
{
MatrixType m2, m3;
Index size = rows;
do {
m1 = MatrixType::Random(size,size);
qr.compute(m1);
} while(!qr.isInvertible());
MatrixType m1_inv = qr.inverse();
m3 = m1 * MatrixType::Random(size,cols2);
m2 = qr.solve(m3);
VERIFY_IS_APPROX(m2, m1_inv*m3);
}
}
template<typename MatrixType, int Cols2> void qr_fixedsize()
{
using std::sqrt;
using std::abs;
enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
int rank = internal::random<int>(1, (std::min)(int(Rows), int(Cols))-1);
Matrix<Scalar,Rows,Cols> m1;
createRandomPIMatrixOfRank(rank,Rows,Cols,m1);
ColPivHouseholderQR<Matrix<Scalar,Rows,Cols> > qr(m1);
VERIFY_IS_EQUAL(rank, qr.rank());
VERIFY_IS_EQUAL(Cols - qr.rank(), qr.dimensionOfKernel());
VERIFY_IS_EQUAL(qr.isInjective(), (rank == Rows));
VERIFY_IS_EQUAL(qr.isSurjective(), (rank == Cols));
VERIFY_IS_EQUAL(qr.isInvertible(), (qr.isInjective() && qr.isSurjective()));
Matrix<Scalar,Rows,Cols> r = qr.matrixQR().template triangularView<Upper>();
Matrix<Scalar,Rows,Cols> c = qr.householderQ() * r * qr.colsPermutation().inverse();
VERIFY_IS_APPROX(m1, c);
check_solverbase<Matrix<Scalar,Cols,Cols2>, Matrix<Scalar,Rows,Cols2> >(m1, qr, Rows, Cols, Cols2);
// Verify that the absolute value of the diagonal elements in R are
// non-increasing until they reache the singularity threshold.
RealScalar threshold =
sqrt(RealScalar(Rows)) * (std::abs)(r(0, 0)) * NumTraits<Scalar>::epsilon();
for (Index i = 0; i < (std::min)(int(Rows), int(Cols)) - 1; ++i) {
RealScalar x = numext::abs(r(i, i));
RealScalar y = numext::abs(r(i + 1, i + 1));
if (x < threshold && y < threshold) continue;
if (!test_isApproxOrLessThan(y, x)) {
for (Index j = 0; j < (std::min)(int(Rows), int(Cols)); ++j) {
std::cout << "i = " << j << ", |r_ii| = " << numext::abs(r(j, j)) << std::endl;
}
std::cout << "Failure at i=" << i << ", rank=" << rank
<< ", threshold=" << threshold << std::endl;
}
VERIFY_IS_APPROX_OR_LESS_THAN(y, x);
}
}
// This test is meant to verify that pivots are chosen such that
// even for a graded matrix, the diagonal of R falls of roughly
// monotonically until it reaches the threshold for singularity.
// We use the so-called Kahan matrix, which is a famous counter-example
// for rank-revealing QR. See
// http://www.netlib.org/lapack/lawnspdf/lawn176.pdf
// page 3 for more detail.
template<typename MatrixType> void qr_kahan_matrix()
{
using std::sqrt;
using std::abs;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
Index rows = 300, cols = rows;
MatrixType m1;
m1.setZero(rows,cols);
RealScalar s = std::pow(NumTraits<RealScalar>::epsilon(), 1.0 / rows);
RealScalar c = std::sqrt(1 - s*s);
RealScalar pow_s_i(1.0); // pow(s,i)
for (Index i = 0; i < rows; ++i) {
m1(i, i) = pow_s_i;
m1.row(i).tail(rows - i - 1) = -pow_s_i * c * MatrixType::Ones(1, rows - i - 1);
pow_s_i *= s;
}
m1 = (m1 + m1.transpose()).eval();
ColPivHouseholderQR<MatrixType> qr(m1);
MatrixType r = qr.matrixQR().template triangularView<Upper>();
RealScalar threshold =
std::sqrt(RealScalar(rows)) * numext::abs(r(0, 0)) * NumTraits<Scalar>::epsilon();
for (Index i = 0; i < (std::min)(rows, cols) - 1; ++i) {
RealScalar x = numext::abs(r(i, i));
RealScalar y = numext::abs(r(i + 1, i + 1));
if (x < threshold && y < threshold) continue;
if (!test_isApproxOrLessThan(y, x)) {
for (Index j = 0; j < (std::min)(rows, cols); ++j) {
std::cout << "i = " << j << ", |r_ii| = " << numext::abs(r(j, j)) << std::endl;
}
std::cout << "Failure at i=" << i << ", rank=" << qr.rank()
<< ", threshold=" << threshold << std::endl;
}
VERIFY_IS_APPROX_OR_LESS_THAN(y, x);
}
}
template<typename MatrixType> void qr_invertible()
{
using std::log;
using std::abs;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef typename MatrixType::Scalar Scalar;
int size = internal::random<int>(10,50);
MatrixType m1(size, size), m2(size, size), m3(size, size);
m1 = MatrixType::Random(size,size);
if (internal::is_same<RealScalar,float>::value)
{
// let's build a matrix more stable to inverse
MatrixType a = MatrixType::Random(size,size*2);
m1 += a * a.adjoint();
}
ColPivHouseholderQR<MatrixType> qr(m1);
check_solverbase<MatrixType, MatrixType>(m1, qr, size, size, size);
// now construct a matrix with prescribed determinant
m1.setZero();
for(int i = 0; i < size; i++) m1(i,i) = internal::random<Scalar>();
RealScalar absdet = abs(m1.diagonal().prod());
m3 = qr.householderQ(); // get a unitary
m1 = m3 * m1 * m3;
qr.compute(m1);
VERIFY_IS_APPROX(absdet, qr.absDeterminant());
VERIFY_IS_APPROX(log(absdet), qr.logAbsDeterminant());
}
template<typename MatrixType> void qr_verify_assert()
{
MatrixType tmp;
ColPivHouseholderQR<MatrixType> qr;
VERIFY_RAISES_ASSERT(qr.matrixQR())
VERIFY_RAISES_ASSERT(qr.solve(tmp))
VERIFY_RAISES_ASSERT(qr.transpose().solve(tmp))
VERIFY_RAISES_ASSERT(qr.adjoint().solve(tmp))
VERIFY_RAISES_ASSERT(qr.householderQ())
VERIFY_RAISES_ASSERT(qr.dimensionOfKernel())
VERIFY_RAISES_ASSERT(qr.isInjective())
VERIFY_RAISES_ASSERT(qr.isSurjective())
VERIFY_RAISES_ASSERT(qr.isInvertible())
VERIFY_RAISES_ASSERT(qr.inverse())
VERIFY_RAISES_ASSERT(qr.absDeterminant())
VERIFY_RAISES_ASSERT(qr.logAbsDeterminant())
}
template<typename MatrixType> void cod_verify_assert()
{
MatrixType tmp;
CompleteOrthogonalDecomposition<MatrixType> cod;
VERIFY_RAISES_ASSERT(cod.matrixQTZ())
VERIFY_RAISES_ASSERT(cod.solve(tmp))
VERIFY_RAISES_ASSERT(cod.transpose().solve(tmp))
VERIFY_RAISES_ASSERT(cod.adjoint().solve(tmp))
VERIFY_RAISES_ASSERT(cod.householderQ())
VERIFY_RAISES_ASSERT(cod.dimensionOfKernel())
VERIFY_RAISES_ASSERT(cod.isInjective())
VERIFY_RAISES_ASSERT(cod.isSurjective())
VERIFY_RAISES_ASSERT(cod.isInvertible())
VERIFY_RAISES_ASSERT(cod.pseudoInverse())
VERIFY_RAISES_ASSERT(cod.absDeterminant())
VERIFY_RAISES_ASSERT(cod.logAbsDeterminant())
}
EIGEN_DECLARE_TEST(qr_colpivoting)
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( qr<MatrixXf>() );
CALL_SUBTEST_2( qr<MatrixXd>() );
CALL_SUBTEST_3( qr<MatrixXcd>() );
CALL_SUBTEST_4(( qr_fixedsize<Matrix<float,3,5>, 4 >() ));
CALL_SUBTEST_5(( qr_fixedsize<Matrix<double,6,2>, 3 >() ));
CALL_SUBTEST_5(( qr_fixedsize<Matrix<double,1,1>, 1 >() ));
}
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( cod<MatrixXf>() );
CALL_SUBTEST_2( cod<MatrixXd>() );
CALL_SUBTEST_3( cod<MatrixXcd>() );
CALL_SUBTEST_4(( cod_fixedsize<Matrix<float,3,5>, 4 >() ));
CALL_SUBTEST_5(( cod_fixedsize<Matrix<double,6,2>, 3 >() ));
CALL_SUBTEST_5(( cod_fixedsize<Matrix<double,1,1>, 1 >() ));
}
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( qr_invertible<MatrixXf>() );
CALL_SUBTEST_2( qr_invertible<MatrixXd>() );
CALL_SUBTEST_6( qr_invertible<MatrixXcf>() );
CALL_SUBTEST_3( qr_invertible<MatrixXcd>() );
}
CALL_SUBTEST_7(qr_verify_assert<Matrix3f>());
CALL_SUBTEST_8(qr_verify_assert<Matrix3d>());
CALL_SUBTEST_1(qr_verify_assert<MatrixXf>());
CALL_SUBTEST_2(qr_verify_assert<MatrixXd>());
CALL_SUBTEST_6(qr_verify_assert<MatrixXcf>());
CALL_SUBTEST_3(qr_verify_assert<MatrixXcd>());
CALL_SUBTEST_7(cod_verify_assert<Matrix3f>());
CALL_SUBTEST_8(cod_verify_assert<Matrix3d>());
CALL_SUBTEST_1(cod_verify_assert<MatrixXf>());
CALL_SUBTEST_2(cod_verify_assert<MatrixXd>());
CALL_SUBTEST_6(cod_verify_assert<MatrixXcf>());
CALL_SUBTEST_3(cod_verify_assert<MatrixXcd>());
// Test problem size constructors
CALL_SUBTEST_9(ColPivHouseholderQR<MatrixXf>(10, 20));
CALL_SUBTEST_1( qr_kahan_matrix<MatrixXf>() );
CALL_SUBTEST_2( qr_kahan_matrix<MatrixXd>() );
}
|