1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
// This file is triangularView of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifdef EIGEN_TEST_PART_100
# define EIGEN_NO_DEPRECATED_WARNING
#endif
#include "main.h"
template<typename MatrixType> void triangular_deprecated(const MatrixType &m)
{
Index rows = m.rows();
Index cols = m.cols();
MatrixType m1, m2, m3, m4;
m1.setRandom(rows,cols);
m2.setRandom(rows,cols);
m3 = m1; m4 = m2;
// deprecated method:
m1.template triangularView<Eigen::Upper>().swap(m2);
// use this method instead:
m3.template triangularView<Eigen::Upper>().swap(m4.template triangularView<Eigen::Upper>());
VERIFY_IS_APPROX(m1,m3);
VERIFY_IS_APPROX(m2,m4);
// deprecated method:
m1.template triangularView<Eigen::Lower>().swap(m4);
// use this method instead:
m3.template triangularView<Eigen::Lower>().swap(m2.template triangularView<Eigen::Lower>());
VERIFY_IS_APPROX(m1,m3);
VERIFY_IS_APPROX(m2,m4);
}
template<typename MatrixType> void triangular_square(const MatrixType& m)
{
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
RealScalar largerEps = 10*test_precision<RealScalar>();
Index rows = m.rows();
Index cols = m.cols();
MatrixType m1 = MatrixType::Random(rows, cols),
m2 = MatrixType::Random(rows, cols),
m3(rows, cols),
m4(rows, cols),
r1(rows, cols),
r2(rows, cols);
VectorType v2 = VectorType::Random(rows);
MatrixType m1up = m1.template triangularView<Upper>();
MatrixType m2up = m2.template triangularView<Upper>();
if (rows*cols>1)
{
VERIFY(m1up.isUpperTriangular());
VERIFY(m2up.transpose().isLowerTriangular());
VERIFY(!m2.isLowerTriangular());
}
// VERIFY_IS_APPROX(m1up.transpose() * m2, m1.upper().transpose().lower() * m2);
// test overloaded operator+=
r1.setZero();
r2.setZero();
r1.template triangularView<Upper>() += m1;
r2 += m1up;
VERIFY_IS_APPROX(r1,r2);
// test overloaded operator=
m1.setZero();
m1.template triangularView<Upper>() = m2.transpose() + m2;
m3 = m2.transpose() + m2;
VERIFY_IS_APPROX(m3.template triangularView<Lower>().transpose().toDenseMatrix(), m1);
// test overloaded operator=
m1.setZero();
m1.template triangularView<Lower>() = m2.transpose() + m2;
VERIFY_IS_APPROX(m3.template triangularView<Lower>().toDenseMatrix(), m1);
VERIFY_IS_APPROX(m3.template triangularView<Lower>().conjugate().toDenseMatrix(),
m3.conjugate().template triangularView<Lower>().toDenseMatrix());
m1 = MatrixType::Random(rows, cols);
for (int i=0; i<rows; ++i)
while (numext::abs2(m1(i,i))<RealScalar(1e-1)) m1(i,i) = internal::random<Scalar>();
Transpose<MatrixType> trm4(m4);
// test back and forward substitution with a vector as the rhs
m3 = m1.template triangularView<Upper>();
VERIFY(v2.isApprox(m3.adjoint() * (m1.adjoint().template triangularView<Lower>().solve(v2)), largerEps));
m3 = m1.template triangularView<Lower>();
VERIFY(v2.isApprox(m3.transpose() * (m1.transpose().template triangularView<Upper>().solve(v2)), largerEps));
m3 = m1.template triangularView<Upper>();
VERIFY(v2.isApprox(m3 * (m1.template triangularView<Upper>().solve(v2)), largerEps));
m3 = m1.template triangularView<Lower>();
VERIFY(v2.isApprox(m3.conjugate() * (m1.conjugate().template triangularView<Lower>().solve(v2)), largerEps));
// test back and forward substitution with a matrix as the rhs
m3 = m1.template triangularView<Upper>();
VERIFY(m2.isApprox(m3.adjoint() * (m1.adjoint().template triangularView<Lower>().solve(m2)), largerEps));
m3 = m1.template triangularView<Lower>();
VERIFY(m2.isApprox(m3.transpose() * (m1.transpose().template triangularView<Upper>().solve(m2)), largerEps));
m3 = m1.template triangularView<Upper>();
VERIFY(m2.isApprox(m3 * (m1.template triangularView<Upper>().solve(m2)), largerEps));
m3 = m1.template triangularView<Lower>();
VERIFY(m2.isApprox(m3.conjugate() * (m1.conjugate().template triangularView<Lower>().solve(m2)), largerEps));
// check M * inv(L) using in place API
m4 = m3;
m1.transpose().template triangularView<Eigen::Upper>().solveInPlace(trm4);
VERIFY_IS_APPROX(m4 * m1.template triangularView<Eigen::Lower>(), m3);
// check M * inv(U) using in place API
m3 = m1.template triangularView<Upper>();
m4 = m3;
m3.transpose().template triangularView<Eigen::Lower>().solveInPlace(trm4);
VERIFY_IS_APPROX(m4 * m1.template triangularView<Eigen::Upper>(), m3);
// check solve with unit diagonal
m3 = m1.template triangularView<UnitUpper>();
VERIFY(m2.isApprox(m3 * (m1.template triangularView<UnitUpper>().solve(m2)), largerEps));
// VERIFY(( m1.template triangularView<Upper>()
// * m2.template triangularView<Upper>()).isUpperTriangular());
// test swap
m1.setOnes();
m2.setZero();
m2.template triangularView<Upper>().swap(m1.template triangularView<Eigen::Upper>());
m3.setZero();
m3.template triangularView<Upper>().setOnes();
VERIFY_IS_APPROX(m2,m3);
VERIFY_RAISES_STATIC_ASSERT(m1.template triangularView<Eigen::Lower>().swap(m2.template triangularView<Eigen::Upper>()));
m1.setRandom();
m3 = m1.template triangularView<Upper>();
Matrix<Scalar, MatrixType::ColsAtCompileTime, Dynamic> m5(cols, internal::random<int>(1,20)); m5.setRandom();
Matrix<Scalar, Dynamic, MatrixType::RowsAtCompileTime> m6(internal::random<int>(1,20), rows); m6.setRandom();
VERIFY_IS_APPROX(m1.template triangularView<Upper>() * m5, m3*m5);
VERIFY_IS_APPROX(m6*m1.template triangularView<Upper>(), m6*m3);
m1up = m1.template triangularView<Upper>();
VERIFY_IS_APPROX(m1.template selfadjointView<Upper>().template triangularView<Upper>().toDenseMatrix(), m1up);
VERIFY_IS_APPROX(m1up.template selfadjointView<Upper>().template triangularView<Upper>().toDenseMatrix(), m1up);
VERIFY_IS_APPROX(m1.template selfadjointView<Upper>().template triangularView<Lower>().toDenseMatrix(), m1up.adjoint());
VERIFY_IS_APPROX(m1up.template selfadjointView<Upper>().template triangularView<Lower>().toDenseMatrix(), m1up.adjoint());
VERIFY_IS_APPROX(m1.template selfadjointView<Upper>().diagonal(), m1.diagonal());
m3.setRandom();
const MatrixType& m3c(m3);
VERIFY( is_same_type(m3c.template triangularView<Lower>(),m3.template triangularView<Lower>().template conjugateIf<false>()) );
VERIFY( is_same_type(m3c.template triangularView<Lower>().conjugate(),m3.template triangularView<Lower>().template conjugateIf<true>()) );
VERIFY_IS_APPROX(m3.template triangularView<Lower>().template conjugateIf<true>().toDenseMatrix(),
m3.conjugate().template triangularView<Lower>().toDenseMatrix());
VERIFY_IS_APPROX(m3.template triangularView<Lower>().template conjugateIf<false>().toDenseMatrix(),
m3.template triangularView<Lower>().toDenseMatrix());
VERIFY( is_same_type(m3c.template selfadjointView<Lower>(),m3.template selfadjointView<Lower>().template conjugateIf<false>()) );
VERIFY( is_same_type(m3c.template selfadjointView<Lower>().conjugate(),m3.template selfadjointView<Lower>().template conjugateIf<true>()) );
VERIFY_IS_APPROX(m3.template selfadjointView<Lower>().template conjugateIf<true>().toDenseMatrix(),
m3.conjugate().template selfadjointView<Lower>().toDenseMatrix());
VERIFY_IS_APPROX(m3.template selfadjointView<Lower>().template conjugateIf<false>().toDenseMatrix(),
m3.template selfadjointView<Lower>().toDenseMatrix());
}
template<typename MatrixType> void triangular_rect(const MatrixType& m)
{
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
Index rows = m.rows();
Index cols = m.cols();
MatrixType m1 = MatrixType::Random(rows, cols),
m2 = MatrixType::Random(rows, cols),
m3(rows, cols),
m4(rows, cols),
r1(rows, cols),
r2(rows, cols);
MatrixType m1up = m1.template triangularView<Upper>();
MatrixType m2up = m2.template triangularView<Upper>();
if (rows>1 && cols>1)
{
VERIFY(m1up.isUpperTriangular());
VERIFY(m2up.transpose().isLowerTriangular());
VERIFY(!m2.isLowerTriangular());
}
// test overloaded operator+=
r1.setZero();
r2.setZero();
r1.template triangularView<Upper>() += m1;
r2 += m1up;
VERIFY_IS_APPROX(r1,r2);
// test overloaded operator=
m1.setZero();
m1.template triangularView<Upper>() = 3 * m2;
m3 = 3 * m2;
VERIFY_IS_APPROX(m3.template triangularView<Upper>().toDenseMatrix(), m1);
m1.setZero();
m1.template triangularView<Lower>() = 3 * m2;
VERIFY_IS_APPROX(m3.template triangularView<Lower>().toDenseMatrix(), m1);
m1.setZero();
m1.template triangularView<StrictlyUpper>() = 3 * m2;
VERIFY_IS_APPROX(m3.template triangularView<StrictlyUpper>().toDenseMatrix(), m1);
m1.setZero();
m1.template triangularView<StrictlyLower>() = 3 * m2;
VERIFY_IS_APPROX(m3.template triangularView<StrictlyLower>().toDenseMatrix(), m1);
m1.setRandom();
m2 = m1.template triangularView<Upper>();
VERIFY(m2.isUpperTriangular());
VERIFY(!m2.isLowerTriangular());
m2 = m1.template triangularView<StrictlyUpper>();
VERIFY(m2.isUpperTriangular());
VERIFY(m2.diagonal().isMuchSmallerThan(RealScalar(1)));
m2 = m1.template triangularView<UnitUpper>();
VERIFY(m2.isUpperTriangular());
m2.diagonal().array() -= Scalar(1);
VERIFY(m2.diagonal().isMuchSmallerThan(RealScalar(1)));
m2 = m1.template triangularView<Lower>();
VERIFY(m2.isLowerTriangular());
VERIFY(!m2.isUpperTriangular());
m2 = m1.template triangularView<StrictlyLower>();
VERIFY(m2.isLowerTriangular());
VERIFY(m2.diagonal().isMuchSmallerThan(RealScalar(1)));
m2 = m1.template triangularView<UnitLower>();
VERIFY(m2.isLowerTriangular());
m2.diagonal().array() -= Scalar(1);
VERIFY(m2.diagonal().isMuchSmallerThan(RealScalar(1)));
// test swap
m1.setOnes();
m2.setZero();
m2.template triangularView<Upper>().swap(m1.template triangularView<Eigen::Upper>());
m3.setZero();
m3.template triangularView<Upper>().setOnes();
VERIFY_IS_APPROX(m2,m3);
}
void bug_159()
{
Matrix3d m = Matrix3d::Random().triangularView<Lower>();
EIGEN_UNUSED_VARIABLE(m)
}
EIGEN_DECLARE_TEST(triangular)
{
int maxsize = (std::min)(EIGEN_TEST_MAX_SIZE,20);
for(int i = 0; i < g_repeat ; i++)
{
int r = internal::random<int>(2,maxsize); TEST_SET_BUT_UNUSED_VARIABLE(r)
int c = internal::random<int>(2,maxsize); TEST_SET_BUT_UNUSED_VARIABLE(c)
CALL_SUBTEST_1( triangular_square(Matrix<float, 1, 1>()) );
CALL_SUBTEST_2( triangular_square(Matrix<float, 2, 2>()) );
CALL_SUBTEST_3( triangular_square(Matrix3d()) );
CALL_SUBTEST_4( triangular_square(Matrix<std::complex<float>,8, 8>()) );
CALL_SUBTEST_5( triangular_square(MatrixXcd(r,r)) );
CALL_SUBTEST_6( triangular_square(Matrix<float,Dynamic,Dynamic,RowMajor>(r, r)) );
CALL_SUBTEST_7( triangular_rect(Matrix<float, 4, 5>()) );
CALL_SUBTEST_8( triangular_rect(Matrix<double, 6, 2>()) );
CALL_SUBTEST_9( triangular_rect(MatrixXcf(r, c)) );
CALL_SUBTEST_5( triangular_rect(MatrixXcd(r, c)) );
CALL_SUBTEST_6( triangular_rect(Matrix<float,Dynamic,Dynamic,RowMajor>(r, c)) );
CALL_SUBTEST_100( triangular_deprecated(Matrix<float, 5, 7>()) );
CALL_SUBTEST_100( triangular_deprecated(MatrixXd(r,c)) );
}
CALL_SUBTEST_1( bug_159() );
}
|