1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Hauke Heibel <hauke.heibel@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/Core>
#include <Eigen/Geometry>
#include <Eigen/LU> // required for MatrixBase::determinant
#include <Eigen/SVD> // required for SVD
using namespace Eigen;
// Constructs a random matrix from the unitary group U(size).
template <typename T>
Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> randMatrixUnitary(int size)
{
typedef T Scalar;
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> MatrixType;
MatrixType Q;
int max_tries = 40;
bool is_unitary = false;
while (!is_unitary && max_tries > 0)
{
// initialize random matrix
Q = MatrixType::Random(size, size);
// orthogonalize columns using the Gram-Schmidt algorithm
for (int col = 0; col < size; ++col)
{
typename MatrixType::ColXpr colVec = Q.col(col);
for (int prevCol = 0; prevCol < col; ++prevCol)
{
typename MatrixType::ColXpr prevColVec = Q.col(prevCol);
colVec -= colVec.dot(prevColVec)*prevColVec;
}
Q.col(col) = colVec.normalized();
}
// this additional orthogonalization is not necessary in theory but should enhance
// the numerical orthogonality of the matrix
for (int row = 0; row < size; ++row)
{
typename MatrixType::RowXpr rowVec = Q.row(row);
for (int prevRow = 0; prevRow < row; ++prevRow)
{
typename MatrixType::RowXpr prevRowVec = Q.row(prevRow);
rowVec -= rowVec.dot(prevRowVec)*prevRowVec;
}
Q.row(row) = rowVec.normalized();
}
// final check
is_unitary = Q.isUnitary();
--max_tries;
}
if (max_tries == 0)
eigen_assert(false && "randMatrixUnitary: Could not construct unitary matrix!");
return Q;
}
// Constructs a random matrix from the special unitary group SU(size).
template <typename T>
Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> randMatrixSpecialUnitary(int size)
{
typedef T Scalar;
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> MatrixType;
// initialize unitary matrix
MatrixType Q = randMatrixUnitary<Scalar>(size);
// tweak the first column to make the determinant be 1
Q.col(0) *= numext::conj(Q.determinant());
return Q;
}
template <typename MatrixType>
void run_test(int dim, int num_elements)
{
using std::abs;
typedef typename internal::traits<MatrixType>::Scalar Scalar;
typedef Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> MatrixX;
typedef Matrix<Scalar, Eigen::Dynamic, 1> VectorX;
// MUST be positive because in any other case det(cR_t) may become negative for
// odd dimensions!
const Scalar c = abs(internal::random<Scalar>());
MatrixX R = randMatrixSpecialUnitary<Scalar>(dim);
VectorX t = Scalar(50)*VectorX::Random(dim,1);
MatrixX cR_t = MatrixX::Identity(dim+1,dim+1);
cR_t.block(0,0,dim,dim) = c*R;
cR_t.block(0,dim,dim,1) = t;
MatrixX src = MatrixX::Random(dim+1, num_elements);
src.row(dim) = Matrix<Scalar, 1, Dynamic>::Constant(num_elements, Scalar(1));
MatrixX dst = cR_t*src;
MatrixX cR_t_umeyama = umeyama(src.block(0,0,dim,num_elements), dst.block(0,0,dim,num_elements));
const Scalar error = ( cR_t_umeyama*src - dst ).norm() / dst.norm();
VERIFY(error < Scalar(40)*std::numeric_limits<Scalar>::epsilon());
}
template<typename Scalar, int Dimension>
void run_fixed_size_test(int num_elements)
{
using std::abs;
typedef Matrix<Scalar, Dimension+1, Dynamic> MatrixX;
typedef Matrix<Scalar, Dimension+1, Dimension+1> HomMatrix;
typedef Matrix<Scalar, Dimension, Dimension> FixedMatrix;
typedef Matrix<Scalar, Dimension, 1> FixedVector;
const int dim = Dimension;
// MUST be positive because in any other case det(cR_t) may become negative for
// odd dimensions!
// Also if c is to small compared to t.norm(), problem is ill-posed (cf. Bug 744)
const Scalar c = internal::random<Scalar>(0.5, 2.0);
FixedMatrix R = randMatrixSpecialUnitary<Scalar>(dim);
FixedVector t = Scalar(32)*FixedVector::Random(dim,1);
HomMatrix cR_t = HomMatrix::Identity(dim+1,dim+1);
cR_t.block(0,0,dim,dim) = c*R;
cR_t.block(0,dim,dim,1) = t;
MatrixX src = MatrixX::Random(dim+1, num_elements);
src.row(dim) = Matrix<Scalar, 1, Dynamic>::Constant(num_elements, Scalar(1));
MatrixX dst = cR_t*src;
Block<MatrixX, Dimension, Dynamic> src_block(src,0,0,dim,num_elements);
Block<MatrixX, Dimension, Dynamic> dst_block(dst,0,0,dim,num_elements);
HomMatrix cR_t_umeyama = umeyama(src_block, dst_block);
const Scalar error = ( cR_t_umeyama*src - dst ).squaredNorm();
VERIFY(error < Scalar(16)*std::numeric_limits<Scalar>::epsilon());
}
EIGEN_DECLARE_TEST(umeyama)
{
for (int i=0; i<g_repeat; ++i)
{
const int num_elements = internal::random<int>(40,500);
// works also for dimensions bigger than 3...
for (int dim=2; dim<8; ++dim)
{
CALL_SUBTEST_1(run_test<MatrixXd>(dim, num_elements));
CALL_SUBTEST_2(run_test<MatrixXf>(dim, num_elements));
}
CALL_SUBTEST_3((run_fixed_size_test<float, 2>(num_elements)));
CALL_SUBTEST_4((run_fixed_size_test<float, 3>(num_elements)));
CALL_SUBTEST_5((run_fixed_size_test<float, 4>(num_elements)));
CALL_SUBTEST_6((run_fixed_size_test<double, 2>(num_elements)));
CALL_SUBTEST_7((run_fixed_size_test<double, 3>(num_elements)));
CALL_SUBTEST_8((run_fixed_size_test<double, 4>(num_elements)));
}
// Those two calls don't compile and result in meaningful error messages!
// umeyama(MatrixXcf(),MatrixXcf());
// umeyama(MatrixXcd(),MatrixXcd());
}
|