1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2016
// Mehdi Goli Codeplay Software Ltd.
// Ralph Potter Codeplay Software Ltd.
// Luke Iwanski Codeplay Software Ltd.
// Contact: <eigen@codeplay.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_TEST_NO_COMPLEX
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
#define EIGEN_USE_SYCL
#include "main.h"
#include <unsupported/Eigen/CXX11/Tensor>
using Eigen::Tensor;
template<typename DataType, int DataLayout, typename IndexType>
static void test_simple_concatenation(const Eigen::SyclDevice& sycl_device)
{
IndexType leftDim1 = 2;
IndexType leftDim2 = 3;
IndexType leftDim3 = 1;
Eigen::array<IndexType, 3> leftRange = {{leftDim1, leftDim2, leftDim3}};
IndexType rightDim1 = 2;
IndexType rightDim2 = 3;
IndexType rightDim3 = 1;
Eigen::array<IndexType, 3> rightRange = {{rightDim1, rightDim2, rightDim3}};
//IndexType concatDim1 = 3;
// IndexType concatDim2 = 3;
// IndexType concatDim3 = 1;
//Eigen::array<IndexType, 3> concatRange = {{concatDim1, concatDim2, concatDim3}};
Tensor<DataType, 3, DataLayout, IndexType> left(leftRange);
Tensor<DataType, 3, DataLayout, IndexType> right(rightRange);
left.setRandom();
right.setRandom();
DataType * gpu_in1_data = static_cast<DataType*>(sycl_device.allocate(left.dimensions().TotalSize()*sizeof(DataType)));
DataType * gpu_in2_data = static_cast<DataType*>(sycl_device.allocate(right.dimensions().TotalSize()*sizeof(DataType)));
Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType>> gpu_in1(gpu_in1_data, leftRange);
Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType>> gpu_in2(gpu_in2_data, rightRange);
sycl_device.memcpyHostToDevice(gpu_in1_data, left.data(),(left.dimensions().TotalSize())*sizeof(DataType));
sycl_device.memcpyHostToDevice(gpu_in2_data, right.data(),(right.dimensions().TotalSize())*sizeof(DataType));
///
Tensor<DataType, 3, DataLayout, IndexType> concatenation1(leftDim1+rightDim1, leftDim2, leftDim3);
DataType * gpu_out_data1 = static_cast<DataType*>(sycl_device.allocate(concatenation1.dimensions().TotalSize()*sizeof(DataType)));
Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType>> gpu_out1(gpu_out_data1, concatenation1.dimensions());
//concatenation = left.concatenate(right, 0);
gpu_out1.device(sycl_device) =gpu_in1.concatenate(gpu_in2, 0);
sycl_device.memcpyDeviceToHost(concatenation1.data(), gpu_out_data1,(concatenation1.dimensions().TotalSize())*sizeof(DataType));
VERIFY_IS_EQUAL(concatenation1.dimension(0), 4);
VERIFY_IS_EQUAL(concatenation1.dimension(1), 3);
VERIFY_IS_EQUAL(concatenation1.dimension(2), 1);
for (IndexType j = 0; j < 3; ++j) {
for (IndexType i = 0; i < 2; ++i) {
VERIFY_IS_EQUAL(concatenation1(i, j, 0), left(i, j, 0));
}
for (IndexType i = 2; i < 4; ++i) {
VERIFY_IS_EQUAL(concatenation1(i, j, 0), right(i - 2, j, 0));
}
}
sycl_device.deallocate(gpu_out_data1);
Tensor<DataType, 3, DataLayout, IndexType> concatenation2(leftDim1, leftDim2 +rightDim2, leftDim3);
DataType * gpu_out_data2 = static_cast<DataType*>(sycl_device.allocate(concatenation2.dimensions().TotalSize()*sizeof(DataType)));
Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType>> gpu_out2(gpu_out_data2, concatenation2.dimensions());
gpu_out2.device(sycl_device) =gpu_in1.concatenate(gpu_in2, 1);
sycl_device.memcpyDeviceToHost(concatenation2.data(), gpu_out_data2,(concatenation2.dimensions().TotalSize())*sizeof(DataType));
//concatenation = left.concatenate(right, 1);
VERIFY_IS_EQUAL(concatenation2.dimension(0), 2);
VERIFY_IS_EQUAL(concatenation2.dimension(1), 6);
VERIFY_IS_EQUAL(concatenation2.dimension(2), 1);
for (IndexType i = 0; i < 2; ++i) {
for (IndexType j = 0; j < 3; ++j) {
VERIFY_IS_EQUAL(concatenation2(i, j, 0), left(i, j, 0));
}
for (IndexType j = 3; j < 6; ++j) {
VERIFY_IS_EQUAL(concatenation2(i, j, 0), right(i, j - 3, 0));
}
}
sycl_device.deallocate(gpu_out_data2);
Tensor<DataType, 3, DataLayout, IndexType> concatenation3(leftDim1, leftDim2, leftDim3+rightDim3);
DataType * gpu_out_data3 = static_cast<DataType*>(sycl_device.allocate(concatenation3.dimensions().TotalSize()*sizeof(DataType)));
Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType>> gpu_out3(gpu_out_data3, concatenation3.dimensions());
gpu_out3.device(sycl_device) =gpu_in1.concatenate(gpu_in2, 2);
sycl_device.memcpyDeviceToHost(concatenation3.data(), gpu_out_data3,(concatenation3.dimensions().TotalSize())*sizeof(DataType));
//concatenation = left.concatenate(right, 2);
VERIFY_IS_EQUAL(concatenation3.dimension(0), 2);
VERIFY_IS_EQUAL(concatenation3.dimension(1), 3);
VERIFY_IS_EQUAL(concatenation3.dimension(2), 2);
for (IndexType i = 0; i < 2; ++i) {
for (IndexType j = 0; j < 3; ++j) {
VERIFY_IS_EQUAL(concatenation3(i, j, 0), left(i, j, 0));
VERIFY_IS_EQUAL(concatenation3(i, j, 1), right(i, j, 0));
}
}
sycl_device.deallocate(gpu_out_data3);
sycl_device.deallocate(gpu_in1_data);
sycl_device.deallocate(gpu_in2_data);
}
template<typename DataType, int DataLayout, typename IndexType>
static void test_concatenation_as_lvalue(const Eigen::SyclDevice& sycl_device)
{
IndexType leftDim1 = 2;
IndexType leftDim2 = 3;
Eigen::array<IndexType, 2> leftRange = {{leftDim1, leftDim2}};
IndexType rightDim1 = 2;
IndexType rightDim2 = 3;
Eigen::array<IndexType, 2> rightRange = {{rightDim1, rightDim2}};
IndexType concatDim1 = 4;
IndexType concatDim2 = 3;
Eigen::array<IndexType, 2> resRange = {{concatDim1, concatDim2}};
Tensor<DataType, 2, DataLayout, IndexType> left(leftRange);
Tensor<DataType, 2, DataLayout, IndexType> right(rightRange);
Tensor<DataType, 2, DataLayout, IndexType> result(resRange);
left.setRandom();
right.setRandom();
result.setRandom();
DataType * gpu_in1_data = static_cast<DataType*>(sycl_device.allocate(left.dimensions().TotalSize()*sizeof(DataType)));
DataType * gpu_in2_data = static_cast<DataType*>(sycl_device.allocate(right.dimensions().TotalSize()*sizeof(DataType)));
DataType * gpu_out_data = static_cast<DataType*>(sycl_device.allocate(result.dimensions().TotalSize()*sizeof(DataType)));
Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>> gpu_in1(gpu_in1_data, leftRange);
Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>> gpu_in2(gpu_in2_data, rightRange);
Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>> gpu_out(gpu_out_data, resRange);
sycl_device.memcpyHostToDevice(gpu_in1_data, left.data(),(left.dimensions().TotalSize())*sizeof(DataType));
sycl_device.memcpyHostToDevice(gpu_in2_data, right.data(),(right.dimensions().TotalSize())*sizeof(DataType));
sycl_device.memcpyHostToDevice(gpu_out_data, result.data(),(result.dimensions().TotalSize())*sizeof(DataType));
// t1.concatenate(t2, 0) = result;
gpu_in1.concatenate(gpu_in2, 0).device(sycl_device) =gpu_out;
sycl_device.memcpyDeviceToHost(left.data(), gpu_in1_data,(left.dimensions().TotalSize())*sizeof(DataType));
sycl_device.memcpyDeviceToHost(right.data(), gpu_in2_data,(right.dimensions().TotalSize())*sizeof(DataType));
for (IndexType i = 0; i < 2; ++i) {
for (IndexType j = 0; j < 3; ++j) {
VERIFY_IS_EQUAL(left(i, j), result(i, j));
VERIFY_IS_EQUAL(right(i, j), result(i+2, j));
}
}
sycl_device.deallocate(gpu_in1_data);
sycl_device.deallocate(gpu_in2_data);
sycl_device.deallocate(gpu_out_data);
}
template <typename DataType, typename Dev_selector> void tensorConcat_perDevice(Dev_selector s){
QueueInterface queueInterface(s);
auto sycl_device = Eigen::SyclDevice(&queueInterface);
test_simple_concatenation<DataType, RowMajor, int64_t>(sycl_device);
test_simple_concatenation<DataType, ColMajor, int64_t>(sycl_device);
test_concatenation_as_lvalue<DataType, ColMajor, int64_t>(sycl_device);
}
EIGEN_DECLARE_TEST(cxx11_tensor_concatenation_sycl) {
for (const auto& device :Eigen::get_sycl_supported_devices()) {
CALL_SUBTEST(tensorConcat_perDevice<float>(device));
}
}
|