1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
User guide
##########
Defining the geometry: :py:class:`~einsteinpy.metric` objects
*************************************************************
EinsteinPy provides a way to define the background geometry, on which the code would deal with the relativistic dynamics. This geometry has a central operating quantity, known as the Metric Tensor, that encapsulates all the geometrical and topological information about the 4D spacetime.
* EinsteinPy provides a :py:class:`~einsteinpy.metric.BaseMetric` class, that has various utility functions and a proper template, that can be used to define custom Metric classes. All pre-defined classes in :py:class:`~einsteinpy.metric` derive from this class.
* The central quantity required to simulate trajectory of a particle in a gravitational field are the metric derivatives, that can be succinctly written using Christoffel Symbols.
* EinsteinPy provides an easy to use interface to calculate these symbols.
* BaseMetric also provides support for ``f_vec`` and ``perturbation``, where ``f_vec`` corresponds to the RHS of the geodesic equation and ``perturbation`` is a linear Kerr-Schild Perturbation, that can be defined on the underlying metric.
* Note that, EinsteinPy does not perform physical checks on ``perturbation`` currently, and so, users should exercise caution while using it.
We provide an example below, showing how to calculate Time-like Geodesics in Schwarzschild spacetime.
Schwarzschild Metric
====================
EinsteinPy provides an intuitive interface for calculating time-like geodesics in Schwarzschild spacetime.
First of all, we import all the relevant modules and classes:
.. code-block:: python
import numpy as np
from einsteinpy.coordinates.utils import four_position, stacked_vec
from einsteinpy.geodesic import Geodesic
from einsteinpy.metric import Schwarzschild
Defining initial parameters and our Metric Object
-------------------------------------------------
Now, we define the initial parameters, that specify the Schwarzschild metric and our test particle.
.. code-block:: python
M = 6e24 # Mass
t = 0. # Coordinate Time (has no effect in this case, as Schwarzschild metric is static)
x_vec = np.array([130.0, np.pi / 2, -np.pi / 8]) # 3-Position of test particle
v_vec = np.array([0.0, 0.0, 1900.0]) # 3-Velocity of test particle
ms_cov = Schwarzschild(M=M) # Schwarzschild Metric Object
x_4vec = four_position(t, x_vec) # Getting Position 4-Vector
ms_cov_mat = ms_cov.metric_covariant(x_4vec) # Calculating Schwarzschild Metric at x_4vec
init_vec = stacked_vec(ms_cov_mat, t, x_vec, v_vec, time_like=True) # Contains 4-Pos and 4-Vel
Calculating Trajectory/Time-like Geodesic
-----------------------------------------
After creating the metric object and the initial vector, we can use :py:class:`~einsteinpy.geodesic.Geodesic` to create a Geodesic object, that automatically calculates the trajectory.
.. code-block:: python
# Calculating Geodesic
geod = Geodesic(metric=ms_cov, init_vec=init_vec, end_lambda=0.002, step_size=5e-8)
# Getting a descriptive summary on geod
print(geod)
.. code-block:: python
Geodesic Object:
Metric = ((
Name: (Schwarzschild Metric),
Coordinates: (S),
Mass: (6e+24),
Spin parameter: (0),
Charge: (0),
Schwarzschild Radius: (0.008911392322942397)
)),
Initial Vector = ([ 0.00000000e+00 1.30000000e+02 1.57079633e+00 -3.92699082e-01
1.00003462e+00 0.00000000e+00 0.00000000e+00 1.90000000e+03]),
Trajectory = ([[ 0.00000000e+00 1.20104339e+02 -4.97488462e+01 ... 9.45228078e+04
2.28198245e+05 0.00000000e+00]
[ 4.00013846e-08 1.20108103e+02 -4.97397110e+01 ... 9.36471118e+04
2.28560931e+05 -5.80379473e-14]
[ 4.40015231e-07 1.20143810e+02 -4.96475618e+01 ... 8.48885265e+04
2.32184177e+05 -6.38424865e-13]
...
[ 1.99928576e-03 1.29695466e+02 -6.52793459e-01 ... 1.20900076e+05
2.46971585e+05 -1.86135457e-10]
[ 1.99968577e-03 1.29741922e+02 -5.53995726e-01 ... 1.11380963e+05
2.47015864e+05 -1.74024168e-10]
[ 2.00008578e-03 1.29784572e+02 -4.55181739e-01 ... 1.01868292e+05
2.47052855e+05 -1.61922169e-10]])
Bodies Module: :py:class:`~einsteinpy.bodies`
*********************************************
EinsteinPy has a module to define the attractor and revolving bodies, using which plotting and geodesic calculation
becomes much easier.
Importing all the relevant modules and classes :
.. code-block:: python
import numpy as np
from astropy import units as u
from einsteinpy.coordinates import BoyerLindquistDifferential
from einsteinpy.metric import Kerr
from einsteinpy.bodies import Body
from einsteinpy.geodesic import Geodesic
Defining various astronomical bodies :
.. code-block:: python
spin_factor = 0.3 * u.m
Attractor = Body(name="BH", mass = 1.989e30 * u.kg, a = spin_factor)
BL_obj = BoyerLindquistDifferential(50e5 * u.km, np.pi / 2 * u.rad, np.pi * u.rad,
0 * u.km / u.s, 0 * u.rad / u.s, 0 * u.rad / u.s,
spin_factor)
Particle = Body(differential = BL_obj, parent = Attractor)
geodesic = Geodesic(body = Particle, end_lambda = ((1 * u.year).to(u.s)).value / 930,
step_size = ((0.02 * u.min).to(u.s)).value,
metric=Kerr)
geodesic.trajectory # get the values of the trajectory
Plotting the trajectory :
.. code-block:: python
from einsteinpy.plotting import GeodesicPlotter
obj = GeodesicPlotter()
obj.plot(geodesic)
obj.show()
Utilities: :py:class:`~einsteinpy.utils`
****************************************
EinsteinPy provides a great set of utility functions which are frequently used in general and numerical relativity.
* Conversion of Coordinates (both position & velocity)
* Cartesian/Spherical
* Cartesian/Boyer-Lindquist
* Calculation of Schwarzschild Geometry related quantities
* Schwarzschild Radius
* Rate of change of coordinate time w.r.t. proper time
Coordinate Conversion
=====================
In a short example, we would see coordinate conversion between Cartesian and Boyer-Lindquist Coordinates.
Using the functions:
* :py:class:`~einsteinpy.coordinates.BoyerLindquistDifferential.to_cartesian`
* :py:class:`~einsteinpy.coordinates.CartesianDifferential.to_bl`
.. code-block:: python
import numpy as np
from astropy import units as u
from einsteinpy.coordinates import BoyerLindquistDifferential, CartesianDifferential, Cartesian, BoyerLindquist
a = 0.5 * u.km
pos_vec = Cartesian(.265003774 * u.km, -153.000000e-03 * u.km, 0 * u.km)
bl_pos = pos_vec.to_bl(a)
print(bl_pos)
cartsn_pos = bl_pos.to_cartesian(a)
print(cartsn_pos)
pos_vel_coord = CartesianDifferential(.265003774 * u.km, -153.000000e-03 * u.km, 0 * u.km,
145.45557 * u.km/u.s, 251.93643748389 * u.km/u.s, 0 * u.km/u.s)
bl_coord = pos_vel_coord.bl_differential(a)
bl_coord = bl_coord.si_values()
bl_vel = bl_coord[3:]
print(bl_vel)
cartsn_coord = bl_coord.cartesian_differential(a)
cartsn_coord = cartsn_coord.si_values()
cartsn_vel = cartsn_coord[3:]
print(cartsn_vel)
.. code-block:: python
[ 200. -100. 20.5]
[224.54398697 1.47937288 -0.46364761]
Symbolic Calculations
=====================
EinsteinPy also supports symbolic calculations in
:py:class:`~einsteinpy.symbolic`
.. code-block:: python
import sympy
from einsteinpy.symbolic import SchwarzschildMetric, ChristoffelSymbols
m = SchwarzschildMetric()
ch = ChristoffelSymbols.from_metric(m)
print(ch[1,2,:])
.. code-block:: python
[0, 0, -r*(-a/r + 1), 0]
.. code-block:: python
import sympy
from einsteinpy.symbolic import SchwarzschildMetric, EinsteinTensor
m = SchwarzschildMetric()
G1 = EinsteinTensor.from_metric(m)
print(G1.arr)
.. code-block:: python
[[a*c**2*(-a + r)/r**4 + a*c**2*(a - r)/r**4, 0, 0, 0], [0, a/(r**2*(a - r)) + a/(r**2*(-a + r)), 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
Future Plans
============
* Support for null-geodesics in different geometries
* Ultimate goal is providing numerical solutions for Einstein's equations for arbitrarily complex matter distribution.
* Relativistic hydrodynamics
|