1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
import warnings
import numpy as np
import pytest
from numpy.testing import assert_allclose
from einsteinpy.geodesic import Geodesic, Nulllike, Timelike
@pytest.fixture()
def dummy_timegeod():
"""
Equatorial Capture
"""
return Timelike(
metric="Kerr",
metric_params=(0.9,),
position=[2.15, np.pi / 2, 0.],
momentum=[0., 0., 1.5],
steps=50,
delta=0.5,
omega=0.01, # Close orbit
return_cartesian=True,
suppress_warnings=True,
)
@pytest.fixture()
def dummy_nullgeod():
"""
Equatorial Geodesic
"""
return Nulllike(
metric="Kerr",
metric_params=(0.5,),
position=[4., np.pi / 2, 0.],
momentum=[0., 0., 2.],
steps=50,
delta=0.5,
return_cartesian=False,
suppress_warnings=True,
)
def test_str_repr(dummy_timegeod):
geod = dummy_timegeod
assert str(geod) == repr(geod)
def test_NotImplementedError():
try:
geod = Nulllike(
metric="Ker",
metric_params=(0.9,),
position=[2.5, np.pi / 2, 0.],
momentum=[0., 0., -8.5],
)
assert False
except NotImplementedError:
assert True
def test_geodesic_attributes1(dummy_timegeod):
geod = dummy_timegeod
traj = geod.trajectory
assert traj
assert isinstance(traj, tuple)
assert isinstance(traj[0], np.ndarray)
def test_geodesic_attributes2(dummy_timegeod):
geod = dummy_timegeod
traj = geod.trajectory
assert isinstance(traj[1], np.ndarray)
assert traj[0].shape[0] == traj[1].shape[0]
assert traj[1].shape[1] == 8
def test_constant_angular_momentum(dummy_nullgeod):
L = dummy_nullgeod.momentum[-1]
assert_allclose(dummy_nullgeod.trajectory[1][:, -1], L, atol=1e-4, rtol=1e-4)
def test_equatorial_geodesic(dummy_nullgeod):
theta = dummy_nullgeod.position[2]
assert_allclose(dummy_nullgeod.trajectory[1][:, 2], theta, atol=1e-6, rtol=1e-6)
def test_constant_rad():
geod = Timelike(
metric="Kerr",
metric_params=(0.99,),
position=[4., np.pi / 3, 0.],
momentum=[0., 0.767851, 2.],
return_cartesian=False,
steps=50,
delta=1.,
)
r = geod.trajectory[1][:, 1]
assert_allclose(r, 4., atol=1e-2, rtol=1e-2)
def test_kerr0_eq_sch():
metric_params = (0.,)
q0 = [4., np.pi / 2, 0.]
p0 = [0., 0., 0.]
k = Timelike(
metric="Kerr",
metric_params=metric_params,
position=q0,
momentum=p0,
steps=50,
delta=0.5,
return_cartesian=True,
suppress_warnings=True,
)
s = Timelike(
metric="Schwarzschild",
metric_params=metric_params,
position=q0,
momentum=p0,
steps=50,
delta=0.5,
return_cartesian=True,
suppress_warnings=True,
)
assert_allclose(k.trajectory[0], s.trajectory[0], atol=1e-6, rtol=1e-6)
assert_allclose(k.trajectory[1], s.trajectory[1], atol=1e-6, rtol=1e-6)
def test_kerr0_eq_kn00():
metric_params = (0.5, 0.)
q0 = [2.5, np.pi / 2, 0.]
p0 = [0., 0., -8.5]
k = Timelike(
metric="Kerr",
metric_params=metric_params,
position=q0,
momentum=p0,
steps=50,
delta=0.5,
return_cartesian=True,
suppress_warnings=True,
)
kn = Timelike(
metric="KerrNewman",
metric_params=metric_params,
position=q0,
momentum=p0,
steps=50,
delta=0.5,
return_cartesian=True,
suppress_warnings=True,
)
assert_allclose(k.trajectory[0], kn.trajectory[0], atol=1e-6, rtol=1e-6)
assert_allclose(k.trajectory[1], kn.trajectory[1], atol=1e-6, rtol=1e-6)
|