1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
|
# -*- coding: utf-8 -*-
import copy
import datetime
import sys
from sortedcontainers import SortedKeyList
from .util import add_raw_postfix
from .util import dt_to_ts
from .util import EAException
from .util import elastalert_logger
from .util import elasticsearch_client
from .util import format_index
from .util import hashable
from .util import lookup_es_key
from .util import new_get_event_ts
from .util import pretty_ts
from .util import total_seconds
from .util import ts_now
from .util import ts_to_dt
class RuleType(object):
""" The base class for a rule type.
The class must implement add_data and add any matches to self.matches.
:param rules: A rule configuration.
"""
required_options = frozenset()
def __init__(self, rules, args=None):
self.matches = []
self.rules = rules
self.occurrences = {}
self.rules['category'] = self.rules.get('category', '')
self.rules['description'] = self.rules.get('description', '')
self.rules['owner'] = self.rules.get('owner', '')
self.rules['priority'] = self.rules.get('priority', '2')
def add_data(self, data):
""" The function that the ElastAlert client calls with results from ES.
Data is a list of dictionaries, from Elasticsearch.
:param data: A list of events, each of which is a dictionary of terms.
"""
raise NotImplementedError()
def add_match(self, event):
""" This function is called on all matching events. Rules use it to add
extra information about the context of a match. Event is a dictionary
containing terms directly from Elasticsearch and alerts will report
all of the information.
:param event: The matching event, a dictionary of terms.
"""
# Convert datetime's back to timestamps
ts = self.rules.get('timestamp_field')
if ts in event:
event[ts] = dt_to_ts(event[ts])
self.matches.append(copy.deepcopy(event))
def get_match_str(self, match):
""" Returns a string that gives more context about a match.
:param match: The matching event, a dictionary of terms.
:return: A user facing string describing the match.
"""
return ''
def garbage_collect(self, timestamp):
""" Gets called periodically to remove old data that is useless beyond given timestamp.
May also be used to compute things in the absence of new data.
:param timestamp: A timestamp indicating the rule has been run up to that point.
"""
pass
def add_count_data(self, counts):
""" Gets called when a rule has use_count_query set to True. Called to add data from querying to the rule.
:param counts: A dictionary mapping timestamps to hit counts.
"""
raise NotImplementedError()
def add_terms_data(self, terms):
""" Gets called when a rule has use_terms_query set to True.
:param terms: A list of buckets with a key, corresponding to query_key, and the count """
raise NotImplementedError()
def add_aggregation_data(self, payload):
""" Gets called when a rule has use_terms_query set to True.
:param terms: A list of buckets with a key, corresponding to query_key, and the count """
raise NotImplementedError()
class CompareRule(RuleType):
""" A base class for matching a specific term by passing it to a compare function """
required_options = frozenset(['compound_compare_key'])
def expand_entries(self, list_type):
""" Expand entries specified in files using the '!file' directive, if there are
any, then add everything to a set.
"""
entries_set = set()
for entry in self.rules[list_type]:
if entry.startswith("!file"): # - "!file /path/to/list"
filename = entry.split()[1]
with open(filename, 'r') as f:
for line in f:
entries_set.add(line.rstrip())
else:
entries_set.add(entry)
self.rules[list_type] = entries_set
def compare(self, event):
""" An event is a match if this returns true """
raise NotImplementedError()
def add_data(self, data):
# If compare returns true, add it as a match
for event in data:
if self.compare(event):
self.add_match(event)
class BlacklistRule(CompareRule):
""" A CompareRule where the compare function checks a given key against a blacklist """
required_options = frozenset(['compare_key', 'blacklist'])
def __init__(self, rules, args=None):
super(BlacklistRule, self).__init__(rules, args=None)
self.expand_entries('blacklist')
def compare(self, event):
term = lookup_es_key(event, self.rules['compare_key'])
if term in self.rules['blacklist']:
return True
return False
class WhitelistRule(CompareRule):
""" A CompareRule where the compare function checks a given term against a whitelist """
required_options = frozenset(['compare_key', 'whitelist', 'ignore_null'])
def __init__(self, rules, args=None):
super(WhitelistRule, self).__init__(rules, args=None)
self.expand_entries('whitelist')
def compare(self, event):
term = lookup_es_key(event, self.rules['compare_key'])
if term is None:
return not self.rules['ignore_null']
if term not in self.rules['whitelist']:
return True
return False
class ChangeRule(CompareRule):
""" A rule that will store values for a certain term and match if those values change """
required_options = frozenset(['query_key', 'compound_compare_key', 'ignore_null'])
change_map = {}
occurrence_time = {}
def compare(self, event):
key = hashable(lookup_es_key(event, self.rules['query_key']))
values = []
elastalert_logger.debug(" Previous Values of compare keys " + str(self.occurrences))
for val in self.rules['compound_compare_key']:
lookup_value = lookup_es_key(event, val)
values.append(lookup_value)
elastalert_logger.debug(" Current Values of compare keys " + str(values))
changed = False
for val in values:
if not isinstance(val, bool) and not val and self.rules['ignore_null']:
return False
# If we have seen this key before, compare it to the new value
if key in self.occurrences:
for idx, previous_values in enumerate(self.occurrences[key]):
elastalert_logger.debug(" " + str(previous_values) + " " + str(values[idx]))
changed = previous_values != values[idx]
if changed:
break
if changed:
self.change_map[key] = (self.occurrences[key], values)
# If using timeframe, only return true if the time delta is < timeframe
if key in self.occurrence_time:
changed = event[self.rules['timestamp_field']] - self.occurrence_time[key] <= self.rules['timeframe']
# Update the current value and time
elastalert_logger.debug(" Setting current value of compare keys values " + str(values))
self.occurrences[key] = values
if 'timeframe' in self.rules:
self.occurrence_time[key] = event[self.rules['timestamp_field']]
elastalert_logger.debug("Final result of comparision between previous and current values " + str(changed))
return changed
def add_match(self, match):
# TODO this is not technically correct
# if the term changes multiple times before an alert is sent
# this data will be overwritten with the most recent change
change = self.change_map.get(hashable(lookup_es_key(match, self.rules['query_key'])))
extra = {}
if change:
extra = {'old_value': change[0],
'new_value': change[1]}
elastalert_logger.debug("Description of the changed records " + str(dict(list(match.items()) + list(extra.items()))))
super(ChangeRule, self).add_match(dict(list(match.items()) + list(extra.items())))
class FrequencyRule(RuleType):
""" A rule that matches if num_events number of events occur within a timeframe """
required_options = frozenset(['num_events', 'timeframe'])
def __init__(self, *args):
super(FrequencyRule, self).__init__(*args)
self.ts_field = self.rules.get('timestamp_field', '@timestamp')
self.get_ts = new_get_event_ts(self.ts_field)
self.attach_related = self.rules.get('attach_related', False)
def add_count_data(self, data):
""" Add count data to the rule. Data should be of the form {ts: count}. """
if len(data) > 1:
raise EAException('add_count_data can only accept one count at a time')
(ts, count), = list(data.items())
event = ({self.ts_field: ts}, count)
self.occurrences.setdefault('all', EventWindow(self.rules['timeframe'], getTimestamp=self.get_ts)).append(event)
self.check_for_match('all')
def add_terms_data(self, terms):
for timestamp, buckets in terms.items():
for bucket in buckets:
event = ({self.ts_field: timestamp,
self.rules['query_key']: bucket['key']}, bucket['doc_count'])
self.occurrences.setdefault(bucket['key'], EventWindow(self.rules['timeframe'], getTimestamp=self.get_ts)).append(event)
self.check_for_match(bucket['key'])
def add_data(self, data):
if 'query_key' in self.rules:
qk = self.rules['query_key']
else:
qk = None
for event in data:
if qk:
key = hashable(lookup_es_key(event, qk))
else:
# If no query_key, we use the key 'all' for all events
key = 'all'
# Store the timestamps of recent occurrences, per key
self.occurrences.setdefault(key, EventWindow(self.rules['timeframe'], getTimestamp=self.get_ts)).append((event, 1))
self.check_for_match(key, end=False)
# We call this multiple times with the 'end' parameter because subclasses
# may or may not want to check while only partial data has been added
if key in self.occurrences: # could have been emptied by previous check
self.check_for_match(key, end=True)
def check_for_match(self, key, end=False):
# Match if, after removing old events, we hit num_events.
# the 'end' parameter depends on whether this was called from the
# middle or end of an add_data call and is used in subclasses
if self.occurrences[key].count() >= self.rules['num_events']:
event = self.occurrences[key].data[-1][0]
if self.attach_related:
event['related_events'] = [data[0] for data in self.occurrences[key].data[:-1]]
self.add_match(event)
self.occurrences.pop(key)
def garbage_collect(self, timestamp):
""" Remove all occurrence data that is beyond the timeframe away """
stale_keys = []
for key, window in self.occurrences.items():
if timestamp - lookup_es_key(window.data[-1][0], self.ts_field) > self.rules['timeframe']:
stale_keys.append(key)
list(map(self.occurrences.pop, stale_keys))
def get_match_str(self, match):
lt = self.rules.get('use_local_time')
match_ts = lookup_es_key(match, self.ts_field)
starttime = pretty_ts(dt_to_ts(ts_to_dt(match_ts) - self.rules['timeframe']), lt)
endtime = pretty_ts(match_ts, lt)
message = 'At least %d events occurred between %s and %s\n\n' % (self.rules['num_events'],
starttime,
endtime)
return message
class AnyRule(RuleType):
""" A rule that will match on any input data """
def add_data(self, data):
for datum in data:
self.add_match(datum)
class EventWindow(object):
""" A container for hold event counts for rules which need a chronological ordered event window. """
def __init__(self, timeframe, onRemoved=None, getTimestamp=new_get_event_ts('@timestamp')):
self.timeframe = timeframe
self.onRemoved = onRemoved
self.get_ts = getTimestamp
self.data = SortedKeyList(key=self.get_ts)
self.running_count = 0
def clear(self):
self.data = SortedKeyList(key=self.get_ts)
self.running_count = 0
def append(self, event):
""" Add an event to the window. Event should be of the form (dict, count).
This will also pop the oldest events and call onRemoved on them until the
window size is less than timeframe. """
self.data.add(event)
self.running_count += event[1]
while self.duration() >= self.timeframe:
oldest = self.data[0]
self.data.remove(oldest)
self.running_count -= oldest[1]
self.onRemoved and self.onRemoved(oldest)
def duration(self):
""" Get the size in timedelta of the window. """
if not self.data:
return datetime.timedelta(0)
return self.get_ts(self.data[-1]) - self.get_ts(self.data[0])
def count(self):
""" Count the number of events in the window. """
return self.running_count
def mean(self):
""" Compute the mean of the value_field in the window. """
if len(self.data) > 0:
datasum = 0
datalen = 0
for dat in self.data:
if "placeholder" not in dat[0]:
datasum += dat[1]
datalen += 1
if datalen > 0:
return datasum / float(datalen)
return None
else:
return None
def __iter__(self):
return iter(self.data)
class SpikeRule(RuleType):
""" A rule that uses two sliding windows to compare relative event frequency. """
required_options = frozenset(['timeframe', 'spike_height', 'spike_type'])
def __init__(self, *args):
super(SpikeRule, self).__init__(*args)
self.timeframe = self.rules['timeframe']
self.ref_windows = {}
self.cur_windows = {}
self.ts_field = self.rules.get('timestamp_field', '@timestamp')
self.get_ts = new_get_event_ts(self.ts_field)
self.first_event = {}
self.skip_checks = {}
self.field_value = self.rules.get('field_value')
self.ref_window_filled_once = False
def add_count_data(self, data):
""" Add count data to the rule. Data should be of the form {ts: count}. """
if len(data) > 1:
raise EAException('add_count_data can only accept one count at a time')
for ts, count in data.items():
self.handle_event({self.ts_field: ts}, count, 'all')
def add_terms_data(self, terms):
for timestamp, buckets in terms.items():
for bucket in buckets:
count = bucket['doc_count']
event = {self.ts_field: timestamp,
self.rules['query_key']: bucket['key']}
key = bucket['key']
self.handle_event(event, count, key)
def add_data(self, data):
for event in data:
qk = self.rules.get('query_key', 'all')
if qk != 'all':
qk = hashable(lookup_es_key(event, qk))
if qk is None:
qk = 'other'
if self.field_value is not None:
count = lookup_es_key(event, self.field_value)
if count is not None:
try:
count = int(count)
except ValueError:
elastalert_logger.warn('{} is not a number: {}'.format(self.field_value, count))
else:
self.handle_event(event, count, qk)
else:
self.handle_event(event, 1, qk)
def clear_windows(self, qk, event):
# Reset the state and prevent alerts until windows filled again
self.ref_windows[qk].clear()
self.first_event.pop(qk)
self.skip_checks[qk] = lookup_es_key(event, self.ts_field) + self.rules['timeframe'] * 2
def handle_event(self, event, count, qk='all'):
self.first_event.setdefault(qk, event)
self.ref_windows.setdefault(qk, EventWindow(self.timeframe, getTimestamp=self.get_ts))
self.cur_windows.setdefault(qk, EventWindow(self.timeframe, self.ref_windows[qk].append, self.get_ts))
self.cur_windows[qk].append((event, count))
# Don't alert if ref window has not yet been filled for this key AND
if lookup_es_key(event, self.ts_field) - self.first_event[qk][self.ts_field] < self.rules['timeframe'] * 2:
# ElastAlert has not been running long enough for any alerts OR
if not self.ref_window_filled_once:
return
# This rule is not using alert_on_new_data (with query_key) OR
if not (self.rules.get('query_key') and self.rules.get('alert_on_new_data')):
return
# An alert for this qk has recently fired
if qk in self.skip_checks and lookup_es_key(event, self.ts_field) < self.skip_checks[qk]:
return
else:
self.ref_window_filled_once = True
if self.field_value is not None:
if self.find_matches(self.ref_windows[qk].mean(), self.cur_windows[qk].mean()):
# skip over placeholder events
for match, count in self.cur_windows[qk].data:
if "placeholder" not in match:
break
self.add_match(match, qk)
self.clear_windows(qk, match)
else:
if self.find_matches(self.ref_windows[qk].count(), self.cur_windows[qk].count()):
# skip over placeholder events which have count=0
for match, count in self.cur_windows[qk].data:
if count:
break
self.add_match(match, qk)
self.clear_windows(qk, match)
def add_match(self, match, qk):
extra_info = {}
if self.field_value is None:
spike_count = self.cur_windows[qk].count()
reference_count = self.ref_windows[qk].count()
else:
spike_count = self.cur_windows[qk].mean()
reference_count = self.ref_windows[qk].mean()
extra_info = {'spike_count': spike_count,
'reference_count': reference_count}
match = dict(list(match.items()) + list(extra_info.items()))
super(SpikeRule, self).add_match(match)
def find_matches(self, ref, cur):
""" Determines if an event spike or dip happening. """
# Apply threshold limits
if self.field_value is None:
if (cur < self.rules.get('threshold_cur', 0) or
ref < self.rules.get('threshold_ref', 0)):
return False
elif ref is None or ref == 0 or cur is None or cur == 0:
return False
spike_up, spike_down = False, False
if cur <= ref / self.rules['spike_height']:
spike_down = True
if cur >= ref * self.rules['spike_height']:
spike_up = True
if (self.rules['spike_type'] in ['both', 'up'] and spike_up) or \
(self.rules['spike_type'] in ['both', 'down'] and spike_down):
return True
return False
def get_match_str(self, match):
if self.field_value is None:
message = 'An abnormal number (%d) of events occurred around %s.\n' % (
match['spike_count'],
pretty_ts(match[self.rules['timestamp_field']], self.rules.get('use_local_time'))
)
message += 'Preceding that time, there were only %d events within %s\n\n' % (match['reference_count'], self.rules['timeframe'])
else:
message = 'An abnormal average value (%.2f) of field \'%s\' occurred around %s.\n' % (
match['spike_count'],
self.field_value,
pretty_ts(match[self.rules['timestamp_field']],
self.rules.get('use_local_time'))
)
message += 'Preceding that time, the field had an average value of (%.2f) within %s\n\n' % (
match['reference_count'], self.rules['timeframe'])
return message
def garbage_collect(self, ts):
# Windows are sized according to their newest event
# This is a placeholder to accurately size windows in the absence of events
for qk in list(self.cur_windows.keys()):
# If we havn't seen this key in a long time, forget it
if qk != 'all' and self.ref_windows[qk].count() == 0 and self.cur_windows[qk].count() == 0:
self.cur_windows.pop(qk)
self.ref_windows.pop(qk)
continue
placeholder = {self.ts_field: ts, "placeholder": True}
# The placeholder may trigger an alert, in which case, qk will be expected
if qk != 'all':
placeholder.update({self.rules['query_key']: qk})
self.handle_event(placeholder, 0, qk)
class FlatlineRule(FrequencyRule):
""" A rule that matches when there is a low number of events given a timeframe. """
required_options = frozenset(['timeframe', 'threshold'])
def __init__(self, *args):
super(FlatlineRule, self).__init__(*args)
self.threshold = self.rules['threshold']
# Dictionary mapping query keys to the first events
self.first_event = {}
def check_for_match(self, key, end=True):
# This function gets called between every added document with end=True after the last
# We ignore the calls before the end because it may trigger false positives
if not end:
return
most_recent_ts = self.get_ts(self.occurrences[key].data[-1])
if self.first_event.get(key) is None:
self.first_event[key] = most_recent_ts
# Don't check for matches until timeframe has elapsed
if most_recent_ts - self.first_event[key] < self.rules['timeframe']:
return
# Match if, after removing old events, we hit num_events
count = self.occurrences[key].count()
if count < self.rules['threshold']:
# Do a deep-copy, otherwise we lose the datetime type in the timestamp field of the last event
event = copy.deepcopy(self.occurrences[key].data[-1][0])
event.update(key=key, count=count)
self.add_match(event)
if not self.rules.get('forget_keys'):
# After adding this match, leave the occurrences windows alone since it will
# be pruned in the next add_data or garbage_collect, but reset the first_event
# so that alerts continue to fire until the threshold is passed again.
least_recent_ts = self.get_ts(self.occurrences[key].data[0])
timeframe_ago = most_recent_ts - self.rules['timeframe']
self.first_event[key] = min(least_recent_ts, timeframe_ago)
else:
# Forget about this key until we see it again
self.first_event.pop(key)
self.occurrences.pop(key)
def get_match_str(self, match):
ts = match[self.rules['timestamp_field']]
lt = self.rules.get('use_local_time')
message = 'An abnormally low number of events occurred around %s.\n' % (pretty_ts(ts, lt))
message += 'Between %s and %s, there were less than %s events.\n\n' % (
pretty_ts(dt_to_ts(ts_to_dt(ts) - self.rules['timeframe']), lt),
pretty_ts(ts, lt),
self.rules['threshold']
)
return message
def garbage_collect(self, ts):
# We add an event with a count of zero to the EventWindow for each key. This will cause the EventWindow
# to remove events that occurred more than one `timeframe` ago, and call onRemoved on them.
default = ['all'] if 'query_key' not in self.rules else []
for key in list(self.occurrences.keys()) or default:
self.occurrences.setdefault(
key,
EventWindow(self.rules['timeframe'], getTimestamp=self.get_ts)
).append(
({self.ts_field: ts}, 0)
)
self.first_event.setdefault(key, ts)
self.check_for_match(key)
class NewTermsRule(RuleType):
""" Alerts on a new value in a list of fields. """
def __init__(self, rule, args=None):
super(NewTermsRule, self).__init__(rule, args)
self.seen_values = {}
# Allow the use of query_key or fields
if 'fields' not in self.rules:
if 'query_key' not in self.rules:
raise EAException("fields or query_key must be specified")
self.fields = self.rules['query_key']
else:
self.fields = self.rules['fields']
if not self.fields:
raise EAException("fields must not be an empty list")
if type(self.fields) != list:
self.fields = [self.fields]
if self.rules.get('use_terms_query') and \
(len(self.fields) != 1 or (len(self.fields) == 1 and type(self.fields[0]) == list)):
raise EAException("use_terms_query can only be used with a single non-composite field")
if self.rules.get('use_terms_query'):
if [self.rules['query_key']] != self.fields:
raise EAException('If use_terms_query is specified, you cannot specify different query_key and fields')
if not self.rules.get('query_key').endswith('.keyword') and not self.rules.get('query_key').endswith('.raw'):
if self.rules.get('use_keyword_postfix', True):
elastalert_logger.warn('Warning: If query_key is a non-keyword field, you must set '
'use_keyword_postfix to false, or add .keyword/.raw to your query_key.')
try:
self.get_all_terms(args)
except Exception as e:
# Refuse to start if we cannot get existing terms
raise EAException('Error searching for existing terms: %s' % (repr(e))).with_traceback(sys.exc_info()[2])
def get_all_terms(self, args):
""" Performs a terms aggregation for each field to get every existing term. """
self.es = elasticsearch_client(self.rules)
window_size = datetime.timedelta(**self.rules.get('terms_window_size', {'days': 30}))
field_name = {"field": "", "size": 2147483647} # Integer.MAX_VALUE
query_template = {"aggs": {"values": {"terms": field_name}}}
if args and hasattr(args, 'start') and args.start:
end = ts_to_dt(args.start)
elif 'start_date' in self.rules:
end = ts_to_dt(self.rules['start_date'])
else:
end = ts_now()
start = end - window_size
step = datetime.timedelta(**self.rules.get('window_step_size', {'days': 1}))
for field in self.fields:
tmp_start = start
tmp_end = min(start + step, end)
time_filter = {self.rules['timestamp_field']: {'lt': self.rules['dt_to_ts'](tmp_end), 'gte': self.rules['dt_to_ts'](tmp_start)}}
query_template['filter'] = {'bool': {'must': [{'range': time_filter}]}}
query = {'aggs': {'filtered': query_template}}
if 'filter' in self.rules:
for item in self.rules['filter']:
query_template['filter']['bool']['must'].append(item)
# For composite keys, we will need to perform sub-aggregations
if type(field) == list:
self.seen_values.setdefault(tuple(field), [])
level = query_template['aggs']
# Iterate on each part of the composite key and add a sub aggs clause to the elastic search query
for i, sub_field in enumerate(field):
if self.rules.get('use_keyword_postfix', True):
level['values']['terms']['field'] = add_raw_postfix(sub_field, self.is_five_or_above())
else:
level['values']['terms']['field'] = sub_field
if i < len(field) - 1:
# If we have more fields after the current one, then set up the next nested structure
level['values']['aggs'] = {'values': {'terms': copy.deepcopy(field_name)}}
level = level['values']['aggs']
else:
self.seen_values.setdefault(field, [])
# For non-composite keys, only a single agg is needed
if self.rules.get('use_keyword_postfix', True):
field_name['field'] = add_raw_postfix(field, self.is_five_or_above())
else:
field_name['field'] = field
# Query the entire time range in small chunks
while tmp_start < end:
if self.rules.get('use_strftime_index'):
index = format_index(self.rules['index'], tmp_start, tmp_end)
else:
index = self.rules['index']
res = self.es.search(body=query, index=index, ignore_unavailable=True, timeout='50s')
if 'aggregations' in res:
buckets = res['aggregations']['filtered']['values']['buckets']
if type(field) == list:
# For composite keys, make the lookup based on all fields
# Make it a tuple since it can be hashed and used in dictionary lookups
for bucket in buckets:
# We need to walk down the hierarchy and obtain the value at each level
self.seen_values[tuple(field)] += self.flatten_aggregation_hierarchy(bucket)
else:
keys = [bucket['key'] for bucket in buckets]
self.seen_values[field] += keys
else:
if type(field) == list:
self.seen_values.setdefault(tuple(field), [])
else:
self.seen_values.setdefault(field, [])
if tmp_start == tmp_end:
break
tmp_start = tmp_end
tmp_end = min(tmp_start + step, end)
time_filter[self.rules['timestamp_field']] = {'lt': self.rules['dt_to_ts'](tmp_end),
'gte': self.rules['dt_to_ts'](tmp_start)}
for key, values in self.seen_values.items():
if not values:
if type(key) == tuple:
# If we don't have any results, it could either be because of the absence of any baseline data
# OR it may be because the composite key contained a non-primitive type. Either way, give the
# end-users a heads up to help them debug what might be going on.
elastalert_logger.warning((
'No results were found from all sub-aggregations. This can either indicate that there is '
'no baseline data OR that a non-primitive field was used in a composite key.'
))
else:
elastalert_logger.info('Found no values for %s' % (field))
continue
self.seen_values[key] = list(set(values))
elastalert_logger.info('Found %s unique values for %s' % (len(set(values)), key))
def flatten_aggregation_hierarchy(self, root, hierarchy_tuple=()):
""" For nested aggregations, the results come back in the following format:
{
"aggregations" : {
"filtered" : {
"doc_count" : 37,
"values" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [ {
"key" : "1.1.1.1", # IP address (root)
"doc_count" : 13,
"values" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [ {
"key" : "80", # Port (sub-aggregation)
"doc_count" : 3,
"values" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [ {
"key" : "ack", # Reason (sub-aggregation, leaf-node)
"doc_count" : 3
}, {
"key" : "syn", # Reason (sub-aggregation, leaf-node)
"doc_count" : 1
} ]
}
}, {
"key" : "82", # Port (sub-aggregation)
"doc_count" : 3,
"values" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [ {
"key" : "ack", # Reason (sub-aggregation, leaf-node)
"doc_count" : 3
}, {
"key" : "syn", # Reason (sub-aggregation, leaf-node)
"doc_count" : 3
} ]
}
} ]
}
}, {
"key" : "2.2.2.2", # IP address (root)
"doc_count" : 4,
"values" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [ {
"key" : "443", # Port (sub-aggregation)
"doc_count" : 3,
"values" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [ {
"key" : "ack", # Reason (sub-aggregation, leaf-node)
"doc_count" : 3
}, {
"key" : "syn", # Reason (sub-aggregation, leaf-node)
"doc_count" : 3
} ]
}
} ]
}
} ]
}
}
}
}
Each level will either have more values and buckets, or it will be a leaf node
We'll ultimately return a flattened list with the hierarchies appended as strings,
e.g the above snippet would yield a list with:
[
('1.1.1.1', '80', 'ack'),
('1.1.1.1', '80', 'syn'),
('1.1.1.1', '82', 'ack'),
('1.1.1.1', '82', 'syn'),
('2.2.2.2', '443', 'ack'),
('2.2.2.2', '443', 'syn')
]
A similar formatting will be performed in the add_data method and used as the basis for comparison
"""
results = []
# There are more aggregation hierarchies left. Traverse them.
if 'values' in root:
results += self.flatten_aggregation_hierarchy(root['values']['buckets'], hierarchy_tuple + (root['key'],))
else:
# We've gotten to a sub-aggregation, which may have further sub-aggregations
# See if we need to traverse further
for node in root:
if 'values' in node:
results += self.flatten_aggregation_hierarchy(node, hierarchy_tuple)
else:
results.append(hierarchy_tuple + (node['key'],))
return results
def add_data(self, data):
for document in data:
for field in self.fields:
value = ()
lookup_field = field
if type(field) == list:
# For composite keys, make the lookup based on all fields
# Make it a tuple since it can be hashed and used in dictionary lookups
lookup_field = tuple(field)
for sub_field in field:
lookup_result = lookup_es_key(document, sub_field)
if not lookup_result:
value = None
break
value += (lookup_result,)
else:
value = lookup_es_key(document, field)
if not value and self.rules.get('alert_on_missing_field'):
document['missing_field'] = lookup_field
self.add_match(copy.deepcopy(document))
elif value:
if value not in self.seen_values[lookup_field]:
document['new_field'] = lookup_field
self.add_match(copy.deepcopy(document))
self.seen_values[lookup_field].append(value)
def add_terms_data(self, terms):
# With terms query, len(self.fields) is always 1 and the 0'th entry is always a string
field = self.fields[0]
for timestamp, buckets in terms.items():
for bucket in buckets:
if bucket['doc_count']:
if bucket['key'] not in self.seen_values[field]:
match = {field: bucket['key'],
self.rules['timestamp_field']: timestamp,
'new_field': field}
self.add_match(match)
self.seen_values[field].append(bucket['key'])
def is_five_or_above(self):
version = self.es.info()['version']['number']
return int(version[0]) >= 5
class CardinalityRule(RuleType):
""" A rule that matches if cardinality of a field is above or below a threshold within a timeframe """
required_options = frozenset(['timeframe', 'cardinality_field'])
def __init__(self, *args):
super(CardinalityRule, self).__init__(*args)
if 'max_cardinality' not in self.rules and 'min_cardinality' not in self.rules:
raise EAException("CardinalityRule must have one of either max_cardinality or min_cardinality")
self.ts_field = self.rules.get('timestamp_field', '@timestamp')
self.cardinality_field = self.rules['cardinality_field']
self.cardinality_cache = {}
self.first_event = {}
self.timeframe = self.rules['timeframe']
def add_data(self, data):
qk = self.rules.get('query_key')
for event in data:
if qk:
key = hashable(lookup_es_key(event, qk))
else:
# If no query_key, we use the key 'all' for all events
key = 'all'
self.cardinality_cache.setdefault(key, {})
self.first_event.setdefault(key, lookup_es_key(event, self.ts_field))
value = hashable(lookup_es_key(event, self.cardinality_field))
if value is not None:
# Store this timestamp as most recent occurence of the term
self.cardinality_cache[key][value] = lookup_es_key(event, self.ts_field)
self.check_for_match(key, event)
def check_for_match(self, key, event, gc=True):
# Check to see if we are past max/min_cardinality for a given key
time_elapsed = lookup_es_key(event, self.ts_field) - self.first_event.get(key, lookup_es_key(event, self.ts_field))
timeframe_elapsed = time_elapsed > self.timeframe
if (len(self.cardinality_cache[key]) > self.rules.get('max_cardinality', float('inf')) or
(len(self.cardinality_cache[key]) < self.rules.get('min_cardinality', float('-inf')) and timeframe_elapsed)):
# If there might be a match, run garbage collect first, as outdated terms are only removed in GC
# Only run it if there might be a match so it doesn't impact performance
if gc:
self.garbage_collect(lookup_es_key(event, self.ts_field))
self.check_for_match(key, event, False)
else:
self.first_event.pop(key, None)
self.add_match(event)
def garbage_collect(self, timestamp):
""" Remove all occurrence data that is beyond the timeframe away """
for qk, terms in list(self.cardinality_cache.items()):
for term, last_occurence in list(terms.items()):
if timestamp - last_occurence > self.rules['timeframe']:
self.cardinality_cache[qk].pop(term)
# Create a placeholder event for if a min_cardinality match occured
if 'min_cardinality' in self.rules:
event = {self.ts_field: timestamp}
if 'query_key' in self.rules:
event.update({self.rules['query_key']: qk})
self.check_for_match(qk, event, False)
def get_match_str(self, match):
lt = self.rules.get('use_local_time')
starttime = pretty_ts(dt_to_ts(ts_to_dt(lookup_es_key(match, self.ts_field)) - self.rules['timeframe']), lt)
endtime = pretty_ts(lookup_es_key(match, self.ts_field), lt)
if 'max_cardinality' in self.rules:
message = ('A maximum of %d unique %s(s) occurred since last alert or between %s and %s\n\n' % (self.rules['max_cardinality'],
self.rules['cardinality_field'],
starttime, endtime))
else:
message = ('Less than %d unique %s(s) occurred since last alert or between %s and %s\n\n' % (self.rules['min_cardinality'],
self.rules['cardinality_field'],
starttime, endtime))
return message
class BaseAggregationRule(RuleType):
def __init__(self, *args):
super(BaseAggregationRule, self).__init__(*args)
bucket_interval = self.rules.get('bucket_interval')
if bucket_interval:
if 'seconds' in bucket_interval:
self.rules['bucket_interval_period'] = str(bucket_interval['seconds']) + 's'
elif 'minutes' in bucket_interval:
self.rules['bucket_interval_period'] = str(bucket_interval['minutes']) + 'm'
elif 'hours' in bucket_interval:
self.rules['bucket_interval_period'] = str(bucket_interval['hours']) + 'h'
elif 'days' in bucket_interval:
self.rules['bucket_interval_period'] = str(bucket_interval['days']) + 'd'
elif 'weeks' in bucket_interval:
self.rules['bucket_interval_period'] = str(bucket_interval['weeks']) + 'w'
else:
raise EAException("Unsupported window size")
if self.rules.get('use_run_every_query_size'):
if total_seconds(self.rules['run_every']) % total_seconds(self.rules['bucket_interval_timedelta']) != 0:
raise EAException("run_every must be evenly divisible by bucket_interval if specified")
else:
if total_seconds(self.rules['buffer_time']) % total_seconds(self.rules['bucket_interval_timedelta']) != 0:
raise EAException("Buffer_time must be evenly divisible by bucket_interval if specified")
def generate_aggregation_query(self):
raise NotImplementedError()
def add_aggregation_data(self, payload):
for timestamp, payload_data in payload.items():
if 'interval_aggs' in payload_data:
self.unwrap_interval_buckets(timestamp, None, payload_data['interval_aggs']['buckets'])
elif 'bucket_aggs' in payload_data:
self.unwrap_term_buckets(timestamp, payload_data['bucket_aggs']['buckets'])
else:
self.check_matches(timestamp, None, payload_data)
def unwrap_interval_buckets(self, timestamp, query_key, interval_buckets):
for interval_data in interval_buckets:
# Use bucket key here instead of start_time for more accurate match timestamp
self.check_matches(ts_to_dt(interval_data['key_as_string']), query_key, interval_data)
def unwrap_term_buckets(self, timestamp, term_buckets):
for term_data in term_buckets:
if 'interval_aggs' in term_data:
self.unwrap_interval_buckets(timestamp, term_data['key'], term_data['interval_aggs']['buckets'])
else:
self.check_matches(timestamp, term_data['key'], term_data)
def check_matches(self, timestamp, query_key, aggregation_data):
raise NotImplementedError()
class MetricAggregationRule(BaseAggregationRule):
""" A rule that matches when there is a low number of events given a timeframe. """
required_options = frozenset(['metric_agg_key', 'metric_agg_type'])
allowed_aggregations = frozenset(['min', 'max', 'avg', 'sum', 'cardinality', 'value_count'])
def __init__(self, *args):
super(MetricAggregationRule, self).__init__(*args)
self.ts_field = self.rules.get('timestamp_field', '@timestamp')
if 'max_threshold' not in self.rules and 'min_threshold' not in self.rules:
raise EAException("MetricAggregationRule must have at least one of either max_threshold or min_threshold")
self.metric_key = 'metric_' + self.rules['metric_agg_key'] + '_' + self.rules['metric_agg_type']
if not self.rules['metric_agg_type'] in self.allowed_aggregations:
raise EAException("metric_agg_type must be one of %s" % (str(self.allowed_aggregations)))
self.rules['aggregation_query_element'] = self.generate_aggregation_query()
def get_match_str(self, match):
message = 'Threshold violation, %s:%s %s (min: %s max : %s) \n\n' % (
self.rules['metric_agg_type'],
self.rules['metric_agg_key'],
match[self.metric_key],
self.rules.get('min_threshold'),
self.rules.get('max_threshold')
)
return message
def generate_aggregation_query(self):
return {self.metric_key: {self.rules['metric_agg_type']: {'field': self.rules['metric_agg_key']}}}
def check_matches(self, timestamp, query_key, aggregation_data):
if "compound_query_key" in self.rules:
self.check_matches_recursive(timestamp, query_key, aggregation_data, self.rules['compound_query_key'], dict())
else:
metric_val = aggregation_data[self.metric_key]['value']
if self.crossed_thresholds(metric_val):
match = {self.rules['timestamp_field']: timestamp,
self.metric_key: metric_val}
if query_key is not None:
match[self.rules['query_key']] = query_key
self.add_match(match)
def check_matches_recursive(self, timestamp, query_key, aggregation_data, compound_keys, match_data):
if len(compound_keys) < 1:
# shouldn't get to this point, but checking for safety
return
match_data[compound_keys[0]] = aggregation_data['key']
if 'bucket_aggs' in aggregation_data:
for result in aggregation_data['bucket_aggs']['buckets']:
self.check_matches_recursive(timestamp,
query_key,
result,
compound_keys[1:],
match_data)
else:
metric_val = aggregation_data[self.metric_key]['value']
if self.crossed_thresholds(metric_val):
match_data[self.rules['timestamp_field']] = timestamp
match_data[self.metric_key] = metric_val
# add compound key to payload to allow alerts to trigger for every unique occurence
compound_value = [match_data[key] for key in self.rules['compound_query_key']]
match_data[self.rules['query_key']] = ",".join([str(value) for value in compound_value])
self.add_match(match_data)
def crossed_thresholds(self, metric_value):
if metric_value is None:
return False
if 'max_threshold' in self.rules and metric_value > self.rules['max_threshold']:
return True
if 'min_threshold' in self.rules and metric_value < self.rules['min_threshold']:
return True
return False
class SpikeMetricAggregationRule(BaseAggregationRule, SpikeRule):
""" A rule that matches when there is a spike in an aggregated event compared to its reference point """
required_options = frozenset(['metric_agg_key', 'metric_agg_type', 'spike_height', 'spike_type'])
allowed_aggregations = frozenset(['min', 'max', 'avg', 'sum', 'cardinality', 'value_count'])
def __init__(self, *args):
# We inherit everything from BaseAggregation and Spike, overwrite only what we need in functions below
super(SpikeMetricAggregationRule, self).__init__(*args)
# MetricAgg alert things
self.metric_key = 'metric_' + self.rules['metric_agg_key'] + '_' + self.rules['metric_agg_type']
if not self.rules['metric_agg_type'] in self.allowed_aggregations:
raise EAException("metric_agg_type must be one of %s" % (str(self.allowed_aggregations)))
# Disabling bucket intervals (doesn't make sense in context of spike to split up your time period)
if self.rules.get('bucket_interval'):
raise EAException("bucket intervals are not supported for spike aggregation alerts")
self.rules['aggregation_query_element'] = self.generate_aggregation_query()
def generate_aggregation_query(self):
"""Lifted from MetricAggregationRule, added support for scripted fields"""
if self.rules.get('metric_agg_script'):
return {self.metric_key: {self.rules['metric_agg_type']: self.rules['metric_agg_script']}}
return {self.metric_key: {self.rules['metric_agg_type']: {'field': self.rules['metric_agg_key']}}}
def add_aggregation_data(self, payload):
"""
BaseAggregationRule.add_aggregation_data unpacks our results and runs checks directly against hardcoded cutoffs.
We instead want to use all of our SpikeRule.handle_event inherited logic (current/reference) from
the aggregation's "value" key to determine spikes from aggregations
"""
for timestamp, payload_data in payload.items():
if 'bucket_aggs' in payload_data:
self.unwrap_term_buckets(timestamp, payload_data['bucket_aggs'])
else:
# no time / term split, just focus on the agg
event = {self.ts_field: timestamp}
agg_value = payload_data[self.metric_key]['value']
self.handle_event(event, agg_value, 'all')
return
def unwrap_term_buckets(self, timestamp, term_buckets, qk=[]):
"""
create separate spike event trackers for each term,
handle compound query keys
"""
for term_data in term_buckets['buckets']:
qk.append(term_data['key'])
# handle compound query keys (nested aggregations)
if term_data.get('bucket_aggs'):
self.unwrap_term_buckets(timestamp, term_data['bucket_aggs'], qk)
# reset the query key to consider the proper depth for N > 2
del qk[-1]
continue
qk_str = ','.join(qk)
agg_value = term_data[self.metric_key]['value']
event = {self.ts_field: timestamp,
self.rules['query_key']: qk_str}
# pass to SpikeRule's tracker
self.handle_event(event, agg_value, qk_str)
# handle unpack of lowest level
del qk[-1]
return
def get_match_str(self, match):
"""
Overwrite SpikeRule's message to relate to the aggregation type & field instead of count
"""
message = 'An abnormal {0} of {1} ({2}) occurred around {3}.\n'.format(
self.rules['metric_agg_type'], self.rules['metric_agg_key'], round(match['spike_count'], 2),
pretty_ts(match[self.rules['timestamp_field']], self.rules.get('use_local_time'))
)
message += 'Preceding that time, there was a {0} of {1} of ({2}) within {3}\n\n'.format(
self.rules['metric_agg_type'], self.rules['metric_agg_key'],
round(match['reference_count'], 2), self.rules['timeframe'])
return message
class PercentageMatchRule(BaseAggregationRule):
required_options = frozenset(['match_bucket_filter'])
def __init__(self, *args):
super(PercentageMatchRule, self).__init__(*args)
self.ts_field = self.rules.get('timestamp_field', '@timestamp')
if 'max_percentage' not in self.rules and 'min_percentage' not in self.rules:
raise EAException("PercentageMatchRule must have at least one of either min_percentage or max_percentage")
self.min_denominator = self.rules.get('min_denominator', 0)
self.match_bucket_filter = self.rules['match_bucket_filter']
self.rules['aggregation_query_element'] = self.generate_aggregation_query()
def get_match_str(self, match):
percentage_format_string = self.rules.get('percentage_format_string', None)
message = 'Percentage violation, value: %s (min: %s max : %s) of %s items\n\n' % (
percentage_format_string % (match['percentage']) if percentage_format_string else match['percentage'],
self.rules.get('min_percentage'),
self.rules.get('max_percentage'),
match['denominator']
)
return message
def generate_aggregation_query(self):
return {
'percentage_match_aggs': {
'filters': {
'other_bucket': True,
'filters': {
'match_bucket': {
'bool': {
'must': self.match_bucket_filter
}
}
}
}
}
}
def check_matches(self, timestamp, query_key, aggregation_data):
match_bucket_count = aggregation_data['percentage_match_aggs']['buckets']['match_bucket']['doc_count']
other_bucket_count = aggregation_data['percentage_match_aggs']['buckets']['_other_']['doc_count']
if match_bucket_count is None or other_bucket_count is None:
return
else:
total_count = other_bucket_count + match_bucket_count
if total_count == 0 or total_count < self.min_denominator:
return
else:
match_percentage = (match_bucket_count * 1.0) / (total_count * 1.0) * 100
if self.percentage_violation(match_percentage):
match = {self.rules['timestamp_field']: timestamp, 'percentage': match_percentage, 'denominator': total_count}
if query_key is not None:
match[self.rules['query_key']] = query_key
self.add_match(match)
def percentage_violation(self, match_percentage):
if 'max_percentage' in self.rules and match_percentage > self.rules['max_percentage']:
return True
if 'min_percentage' in self.rules and match_percentage < self.rules['min_percentage']:
return True
return False
|