1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
[[mapping-geo-point-type]]
=== Geo Point Type
Mapper type called `geo_point` to support geo based points. The
declaration looks as follows:
[source,js]
--------------------------------------------------
{
"pin" : {
"properties" : {
"location" : {
"type" : "geo_point"
}
}
}
}
--------------------------------------------------
[float]
==== Indexed Fields
The `geo_point` mapping will index a single field with the format of
`lat,lon`. The `lat_lon` option can be set to also index the `.lat` and
`.lon` as numeric fields, and `geohash` can be set to `true` to also
index `.geohash` value.
A good practice is to enable indexing `lat_lon` as well, since both the
geo distance and bounding box filters can either be executed using in
memory checks, or using the indexed lat lon values, and it really
depends on the data set which one performs better. Note though, that
indexed lat lon only make sense when there is a single geo point value
for the field, and not multi values.
[float]
==== Geohashes
Geohashes are a form of lat/lon encoding which divides the earth up into
a grid. Each cell in this grid is represented by a geohash string. Each
cell in turn can be further subdivided into smaller cells which are
represented by a longer string. So the longer the geohash, the smaller
(and thus more accurate) the cell is.
Because geohashes are just strings, they can be stored in an inverted
index like any other string, which makes querying them very efficient.
If you enable the `geohash` option, a `geohash` ``sub-field'' will be
indexed as, eg `pin.geohash`. The length of the geohash is controlled by
the `geohash_precision` parameter, which can either be set to an absolute
length (eg `12`, the default) or to a distance (eg `1km`).
More usefully, set the `geohash_prefix` option to `true` to not only index
the geohash value, but all the enclosing cells as well. For instance, a
geohash of `u30` will be indexed as `[u,u3,u30]`. This option can be used
by the <<query-dsl-geohash-cell-filter>> to find geopoints within a
particular cell very efficiently.
[float]
==== Input Structure
The above mapping defines a `geo_point`, which accepts different
formats. The following formats are supported:
[float]
===== Lat Lon as Properties
[source,js]
--------------------------------------------------
{
"pin" : {
"location" : {
"lat" : 41.12,
"lon" : -71.34
}
}
}
--------------------------------------------------
[float]
===== Lat Lon as String
Format in `lat,lon`.
[source,js]
--------------------------------------------------
{
"pin" : {
"location" : "41.12,-71.34"
}
}
--------------------------------------------------
[float]
===== Geohash
[source,js]
--------------------------------------------------
{
"pin" : {
"location" : "drm3btev3e86"
}
}
--------------------------------------------------
[float]
===== Lat Lon as Array
Format in `[lon, lat]`, note, the order of lon/lat here in order to
conform with http://geojson.org/[GeoJSON].
[source,js]
--------------------------------------------------
{
"pin" : {
"location" : [-71.34, 41.12]
}
}
--------------------------------------------------
[float]
==== Mapping Options
[cols="<,<",options="header",]
|=======================================================================
|Option |Description
|`lat_lon` |Set to `true` to also index the `.lat` and `.lon` as fields.
Defaults to `false`.
|`geohash` |Set to `true` to also index the `.geohash` as a field.
Defaults to `false`.
|`geohash_precision` |Sets the geohash precision. It can be set to an
absolute geohash length or a distance value (eg 1km, 1m, 1ml) defining
the size of the smallest cell. Defaults to an absolute length of 12.
|`geohash_prefix` |If this option is set to `true`, not only the geohash
but also all its parent cells (true prefixes) will be indexed as well. The
number of terms that will be indexed depends on the `geohash_precision`.
Defaults to `false`. *Note*: This option implicitly enables `geohash`.
|`validate` |Set to `true` to reject geo points with invalid latitude or
longitude (default is `false`) *Note*: Validation only works when
normalization has been disabled.
|`validate_lat` |Set to `true` to reject geo points with an invalid
latitude
|`validate_lon` |Set to `true` to reject geo points with an invalid
longitude
|`normalize` |Set to `true` to normalize latitude and longitude (default
is `true`)
|`normalize_lat` |Set to `true` to normalize latitude
|`normalize_lon` |Set to `true` to normalize longitude
|=======================================================================
[float]
==== Field data
By default, geo points use the `array` format which loads geo points into two
parallel double arrays, making sure there is no precision loss. However, this
can require a non-negligible amount of memory (16 bytes per document) which is
why Elasticsearch also provides a field data implementation with lossy
compression called `compressed`:
[source,js]
--------------------------------------------------
{
"pin" : {
"properties" : {
"location" : {
"type" : "geo_point",
"fielddata" : {
"format" : "compressed",
"precision" : "1cm"
}
}
}
}
}
--------------------------------------------------
This field data format comes with a `precision` option which allows to
configure how much precision can be traded for memory. The default value is
`1cm`. The following table presents values of the memory savings given various
precisions:
|=============================================
| Precision | Bytes per point | Size reduction
| 1km | 4 | 75%
| 3m | 6 | 62.5%
| 1cm | 8 | 50%
| 1mm | 10 | 37.5%
|=============================================
Precision can be changed on a live index by using the update mapping API.
[float]
==== Usage in Scripts
When using `doc[geo_field_name]` (in the above mapping,
`doc['location']`), the `doc[...].value` returns a `GeoPoint`, which
then allows access to `lat` and `lon` (for example,
`doc[...].value.lat`). For performance, it is better to access the `lat`
and `lon` directly using `doc[...].lat` and `doc[...].lon`.
|