1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
|
[[query-dsl-multi-match-query]]
=== Multi Match Query
The `multi_match` query builds on the <<query-dsl-match-query,`match` query>>
to allow multi-field queries:
[source,js]
--------------------------------------------------
{
"multi_match" : {
"query": "this is a test", <1>
"fields": [ "subject", "message" ] <2>
}
}
--------------------------------------------------
<1> The query string.
<2> The fields to be queried.
[float]
=== `fields` and per-field boosting
Fields can be specified with wildcards, eg:
[source,js]
--------------------------------------------------
{
"multi_match" : {
"query": "Will Smith",
"fields": [ "title", "*_name" ] <1>
}
}
--------------------------------------------------
<1> Query the `title`, `first_name` and `last_name` fields.
Individual fields can be boosted with the caret (`^`) notation:
[source,js]
--------------------------------------------------
{
"multi_match" : {
"query" : "this is a test",
"fields" : [ "subject^3", "message" ] <1>
}
}
--------------------------------------------------
<1> The `subject` field is three times as important as the `message` field.
[float]
=== `use_dis_max`
By default, the `multi_match` query generates a `match` clause per field, then wraps them
in a `dis_max` query. By setting `use_dis_max` to `false`, they will be wrapped in a
`bool` query instead.
[[multi-match-types]]
[float]
=== Types of `multi_match` query:
The way the `multi_match` query is executed internally depends on the `type`
parameter, which can be set to:
[horizontal]
`best_fields`:: (*default*) Finds documents which match any field, but
uses the `_score` from the best field. See <<type-best-fields>>.
`most_fields`:: Finds documents which match any field and combines
the `_score` from each field. See <<type-most-fields>>.
`cross_fields`:: Treats fields with the same `analyzer` as though they
were one big field. Looks for each word in *any*
field. See <<type-cross-fields>>.
`phrase`:: Runs a `match_phrase` query on each field and combines
the `_score` from each field. See <<type-phrase>>.
`phrase_prefix`:: Runs a `match_phrase_prefix` query on each field and
combines the `_score` from each field. See <<type-phrase>>.
[[type-best-fields]]
==== `best_fields`
The `best_fields` type is most useful when you are searching for multiple
words best found in the same field. For instance ``brown fox'' in a single
field is more meaningful than ``brown'' in one field and ``fox'' in the other.
The `best_fields` type generates a <<query-dsl-match-query,`match` query>> for
each field and wraps them in a <<query-dsl-dis-max-query,`dis_max`>> query, to
find the single best matching field. For instance, this query:
[source,js]
--------------------------------------------------
{
"multi_match" : {
"query": "brown fox",
"type": "best_fields",
"fields": [ "subject", "message" ],
"tie_breaker": 0.3
}
}
--------------------------------------------------
would be executed as:
[source,js]
--------------------------------------------------
{
"dis_max": {
"queries": [
{ "match": { "subject": "brown fox" }},
{ "match": { "message": "brown fox" }}
],
"tie_breaker": 0.3
}
}
--------------------------------------------------
Normally the `best_fields` type uses the score of the *single* best matching
field, but if `tie_breaker` is specified, then it calculates the score as
follows:
* the score from the best matching field
* plus `tie_breaker * _score` for all other matching fields
Also, accepts `analyzer`, `boost`, `operator`, `minimum_should_match`,
`fuzziness`, `prefix_length`, `max_expansions`, `rewrite`, `zero_terms_query`
and `cutoff_frequency`, as explained in <<query-dsl-match-query, match query>>.
[IMPORTANT]
[[operator-min]]
.`operator` and `minimum_should_match`
==================================================
The `best_fields` and `most_fields` types are _field-centric_ -- they generate
a `match` query *per field*. This means that the `operator` and
`minimum_should_match` parameters are applied to each field individually,
which is probably not what you want.
Take this query for example:
[source,js]
--------------------------------------------------
{
"multi_match" : {
"query": "Will Smith",
"type": "best_fields",
"fields": [ "first_name", "last_name" ],
"operator": "and" <1>
}
}
--------------------------------------------------
<1> All terms must be present.
This query is executed as:
(+first_name:will +first_name:smith)
| (+last_name:will +last_name:smith)
In other words, *all terms* must be present *in a single field* for a document
to match.
See <<type-cross-fields>> for a better solution.
==================================================
[[type-most-fields]]
==== `most_fields`
The `most_fields` type is most useful when querying multiple fields that
contain the same text analyzed in different ways. For instance, the main
field may contain synonyms, stemming and terms without diacritics. A second
field may contain the original terms, and a third field might contain
shingles. By combining scores from all three fields we can match as many
documents as possible with the main field, but use the second and third fields
to push the most similar results to the top of the list.
This query:
[source,js]
--------------------------------------------------
{
"multi_match" : {
"query": "quick brown fox",
"type": "most_fields",
"fields": [ "title", "title.original", "title.shingles" ]
}
}
--------------------------------------------------
would be executed as:
[source,js]
--------------------------------------------------
{
"bool": {
"should": [
{ "match": { "title": "quick brown fox" }},
{ "match": { "title.original": "quick brown fox" }},
{ "match": { "title.shingles": "quick brown fox" }}
]
}
}
--------------------------------------------------
The score from each `match` clause is added together, then divided by the
number of `match` clauses.
Also, accepts `analyzer`, `boost`, `operator`, `minimum_should_match`,
`fuzziness`, `prefix_length`, `max_expansions`, `rewrite`, `zero_terms_query`
and `cutoff_frequency`, as explained in <<query-dsl-match-query,match query>>, but
*see <<operator-min>>*.
[[type-phrase]]
==== `phrase` and `phrase_prefix`
The `phrase` and `phrase_prefix` types behave just like <<type-best-fields>>,
but they use a `match_phrase` or `match_phrase_prefix` query instead of a
`match` query.
This query:
[source,js]
--------------------------------------------------
{
"multi_match" : {
"query": "quick brown f",
"type": "phrase_prefix",
"fields": [ "subject", "message" ]
}
}
--------------------------------------------------
would be executed as:
[source,js]
--------------------------------------------------
{
"dis_max": {
"queries": [
{ "match_phrase_prefix": { "subject": "quick brown f" }},
{ "match_phrase_prefix": { "message": "quick brown f" }}
]
}
}
--------------------------------------------------
Also, accepts `analyzer`, `boost`, `slop` and `zero_terms_query` as explained
in <<query-dsl-match-query>>. Type `phrase_prefix` additionally accepts
`max_expansions`.
[[type-cross-fields]]
==== `cross_fields`
The `cross_fields` type is particularly useful with structured documents where
multiple fields *should* match. For instance, when querying the `first_name`
and `last_name` fields for ``Will Smith'', the best match is likely to have
``Will'' in one field and ``Smith'' in the other.
****
This sounds like a job for <<type-most-fields>> but there are two problems
with that approach. The first problem is that `operator` and
`minimum_should_match` are applied per-field, instead of per-term (see
<<operator-min,explanation above>>).
The second problem is to do with relevance: the different term frequencies in
the `first_name` and `last_name` fields can produce unexpected results.
For instance, imagine we have two people: ``Will Smith'' and ``Smith Jones''.
``Smith'' as a last name is very common (and so is of low importance) but
``Smith'' as a first name is very uncommon (and so is of great importance).
If we do a search for ``Will Smith'', the ``Smith Jones'' document will
probably appear above the better matching ``Will Smith'' because the score of
`first_name:smith` has trumped the combined scores of `first_name:will` plus
`last_name:smith`.
****
One way of dealing with these types of queries is simply to index the
`first_name` and `last_name` fields into a single `full_name` field. Of
course, this can only be done at index time.
The `cross_field` type tries to solve these problems at query time by taking a
_term-centric_ approach. It first analyzes the query string into individual
terms, then looks for each term in any of the fields, as though they were one
big field.
A query like:
[source,js]
--------------------------------------------------
{
"multi_match" : {
"query": "Will Smith",
"type": "cross_fields",
"fields": [ "first_name", "last_name" ],
"operator": "and"
}
}
--------------------------------------------------
is executed as:
+(first_name:will last_name:will)
+(first_name:smith last_name:smith)
In other words, *all terms* must be present *in at least one field* for a
document to match. (Compare this to
<<operator-min,the logic used for `best_fields` and `most_fields`>>.)
That solves one of the two problems. The problem of differing term frequencies
is solved by _blending_ the term frequencies for all fields in order to even
out the differences. In other words, `first_name:smith` will be treated as
though it has the same weight as `last_name:smith`. (Actually,
`first_name:smith` is given a tiny advantage over `last_name:smith`, just to
make the order of results more stable.)
If you run the above query through the <<search-validate>>, it returns this
explanation:
+blended("will", fields: [first_name, last_name])
+blended("smith", fields: [first_name, last_name])
Also, accepts `analyzer`, `boost`, `operator`, `minimum_should_match`,
`zero_terms_query` and `cutoff_frequency`, as explained in
<<query-dsl-match-query, match query>>.
===== `cross_field` and analysis
The `cross_field` type can only work in term-centric mode on fields that have
the same analyzer. Fields with the same analyzer are grouped together as in
the example above. If there are multiple groups, they are combined with a
`bool` query.
For instance, if we have a `first` and `last` field which have
the same analyzer, plus a `first.edge` and `last.edge` which
both use an `edge_ngram` analyzer, this query:
[source,js]
--------------------------------------------------
{
"multi_match" : {
"query": "Jon",
"type": "cross_fields",
"fields": [
"first", "first.edge",
"last", "last.edge"
]
}
}
--------------------------------------------------
would be executed as:
blended("jon", fields: [first, last])
| (
blended("j", fields: [first.edge, last.edge])
blended("jo", fields: [first.edge, last.edge])
blended("jon", fields: [first.edge, last.edge])
)
In other words, `first` and `last` would be grouped together and
treated as a single field, and `first.edge` and `last.edge` would be
grouped together and treated as a single field.
Having multiple groups is fine, but when combined with `operator` or
`minimum_should_match`, it can suffer from the <<operator-min,same problem>>
as `most_fields` or `best_fields`.
You can easily rewrite this query yourself as two separate `cross_fields`
queries combined with a `bool` query, and apply the `minimum_should_match`
parameter to just one of them:
[source,js]
--------------------------------------------------
{
"bool": {
"should": [
{
"multi_match" : {
"query": "Will Smith",
"type": "cross_fields",
"fields": [ "first", "last" ],
"minimum_should_match": "50%" <1>
}
},
{
"multi_match" : {
"query": "Will Smith",
"type": "cross_fields",
"fields": [ "*.edge" ]
}
}
]
}
}
--------------------------------------------------
<1> Either `will` or `smith` must be present in either of the `first`
or `last` fields
You can force all fields into the same group by specifying the `analyzer`
parameter in the query.
[source,js]
--------------------------------------------------
{
"multi_match" : {
"query": "Jon",
"type": "cross_fields",
"analyzer": "standard", <1>
"fields": [ "first", "last", "*.edge" ]
}
}
--------------------------------------------------
<1> Use the `standard` analyzer for all fields.
which will be executed as:
blended("will", fields: [first, first.edge, last.edge, last])
blended("smith", fields: [first, first.edge, last.edge, last])
===== `tie_breaker`
By default, each per-term `blended` query will use the best score returned by
any field in a group, then these scores are added together to give the final
score. The `tie_breaker` parameter can change the default behaviour of the
per-term `blended` queries. It accepts:
[horizontal]
`0.0`:: Take the single best score out of (eg) `first_name:will`
and `last_name:will` (*default*)
`1.0`:: Add together the scores for (eg) `first_name:will` and
`last_name:will`
`0.0 < n < 1.0`:: Take the single best score plus +tie_breaker+ multiplied
by each of the scores from other matching fields.
|