1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
|
/*=========================================================================
*
* Copyright UMC Utrecht and contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
/** \file
\brief Compare two transform parameter files.
Currently we only compare the transform parameter vector and not the fixed parameters.
*/
#include "itkCommandLineArgumentParser.h"
#include "itkParameterFileParser.h"
#include "itkParameterMapInterface.h"
#include "itkNumericTraits.h"
#include "itkMath.h"
#include "itksys/SystemTools.hxx"
#include "itkImage.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
/**
* ******************* GetHelpString *******************
*/
std::string
GetHelpString( void )
{
std::stringstream ss;
ss << "Usage:" << std::endl
<< "elxTransformParametersCompare" << std::endl
<< " -test transform parameters file to test against baseline\n"
<< " -base baseline transform parameters filename\n"
<< " [-mask] mask image, only supported for the B-spline\n"
//<< " [-t] intensity difference threshold, default 0\n"
<< " [-a] allowable tolerance (), default 1e-6\n"
<< "Computes (test - base) / base.";
return ss.str();
} // end GetHelpString()
// This comparison works on all image types by reading images
// in a 4D double images. If images > 4 dimensions
// must be compared, change this variable.
static const unsigned int ITK_TEST_DIMENSION_MAX = 4;
int
main( int argc, char ** argv )
{
/** Typedefs. */
typedef itk::Image< float, ITK_TEST_DIMENSION_MAX > CoefficientImageType;
typedef CoefficientImageType::RegionType RegionType;
typedef RegionType::SizeType SizeType;
typedef RegionType::IndexType IndexType;
typedef CoefficientImageType::SpacingType SpacingType;
typedef CoefficientImageType::PointType PointType;
typedef CoefficientImageType::PointType OriginType;
typedef CoefficientImageType::DirectionType DirectionType;
typedef itk::ImageRegionIteratorWithIndex< CoefficientImageType > IteratorType;
typedef itk::ImageFileWriter< CoefficientImageType > WriterType;
typedef itk::Image< unsigned char, ITK_TEST_DIMENSION_MAX > MaskImageType;
typedef itk::ImageFileReader< MaskImageType > MaskReaderType;
typedef itk::ImageRegionIteratorWithIndex< MaskImageType > MaskIteratorType;
/** Create command line argument parser. */
itk::CommandLineArgumentParser::Pointer parser = itk::CommandLineArgumentParser::New();
parser->SetCommandLineArguments( argc, argv );
parser->SetProgramHelpText( GetHelpString() );
parser->MarkArgumentAsRequired( "-test", "The input filename." );
parser->MarkArgumentAsRequired( "-base", "The baseline filename." );
itk::CommandLineArgumentParser::ReturnValue validateArguments = parser->CheckForRequiredArguments();
if( validateArguments == itk::CommandLineArgumentParser::FAILED )
{
return EXIT_FAILURE;
}
else if( validateArguments == itk::CommandLineArgumentParser::HELPREQUESTED )
{
return EXIT_SUCCESS;
}
std::string testFileName;
parser->GetCommandLineArgument( "-test", testFileName );
std::string baselineFileName;
parser->GetCommandLineArgument( "-base", baselineFileName );
std::string maskFileName;
parser->GetCommandLineArgument( "-mask", maskFileName );
//double diffThreshold = 0.0;
//parser->GetCommandLineArgument( "-t", diffThreshold );
double allowedTolerance = 1e-6;
parser->GetCommandLineArgument( "-a", allowedTolerance );
if( allowedTolerance < 0 )
{
std::cerr << "ERROR: the specified allowed tolerance (-a) should be non-negative!" << std::endl;
return EXIT_FAILURE;
}
/** Create parameter file reader. */
typedef itk::ParameterFileParser ParserType;
typedef itk::ParameterMapInterface InterfaceType;
typedef double ScalarType;
std::string dummyErrorMessage = "";
ParserType::Pointer parameterFileParser = ParserType::New();
InterfaceType::Pointer config = InterfaceType::New();
/** Read test parameters. */
parameterFileParser->SetParameterFileName( testFileName.c_str() );
try
{
parameterFileParser->ReadParameterFile();
}
catch( itk::ExceptionObject & err )
{
std::cerr << "Error during reading test transform parameters: " << err << std::endl;
return EXIT_FAILURE;
}
config->SetParameterMap( parameterFileParser->GetParameterMap() );
unsigned int numberOfParametersTest = 0;
config->ReadParameter( numberOfParametersTest,
"NumberOfParameters", 0, dummyErrorMessage );
std::vector< ScalarType > parametersTest( numberOfParametersTest,
itk::NumericTraits< ScalarType >::ZeroValue() );
config->ReadParameter( parametersTest, "TransformParameters",
0, numberOfParametersTest - 1, true, dummyErrorMessage );
/** Read baseline parameters. */
parameterFileParser->SetParameterFileName( baselineFileName.c_str() );
try
{
parameterFileParser->ReadParameterFile();
}
catch( itk::ExceptionObject & err )
{
std::cerr << "Error during reading baseline transform parameters: " << err << std::endl;
return EXIT_FAILURE;
}
config->SetParameterMap( parameterFileParser->GetParameterMap() );
unsigned int numberOfParametersBaseline = 0;
config->ReadParameter( numberOfParametersBaseline,
"NumberOfParameters", 0, dummyErrorMessage );
std::vector< ScalarType > parametersBaseline( numberOfParametersBaseline,
itk::NumericTraits< ScalarType >::ZeroValue() );
config->ReadParameter( parametersBaseline, "TransformParameters",
0, numberOfParametersBaseline - 1, true, dummyErrorMessage );
/** The sizes of the baseline and test parameters must match. */
std::cerr << "Baseline transform parameters: " << baselineFileName
<< " has " << numberOfParametersBaseline << " parameters." << std::endl;
std::cerr << "Test transform parameters: " << testFileName
<< " has " << numberOfParametersTest << " parameters." << std::endl;
if( numberOfParametersBaseline != numberOfParametersTest )
{
std::cerr << "ERROR: The number of transform parameters of the baseline and test do not match!" << std::endl;
return EXIT_FAILURE;
}
/** Initialize variables. */
ScalarType diffNorm = itk::NumericTraits< ScalarType >::Zero;
ScalarType baselineNorm = itk::NumericTraits< ScalarType >::Zero;
ScalarType diffNormNormalized = itk::NumericTraits< ScalarType >::Zero;
/** Check if this is a B-spline transform.
* If it is we write a sort of coefficient difference image.
* Only the B-spline transform has mask support.
*/
std::string transformName = "";
config->ReadParameter( transformName, "Transform", 0, true, dummyErrorMessage );
if( transformName != "BSplineTransform" )
{
/** Now compare the two parameter vectors. */
for( unsigned int i = 0; i < numberOfParametersTest; i++ )
{
baselineNorm += vnl_math::sqr( parametersBaseline[ i ] );
diffNorm += vnl_math::sqr( parametersBaseline[ i ] - parametersTest[ i ] );
}
diffNormNormalized = std::sqrt( diffNorm ) / std::sqrt( baselineNorm );
}
else
{
/** This is a B-spline transform. Re-organize the parameters
* as a coefficient image.
*/
/** Get the true dimension. */
unsigned int dimension = 2;
config->ReadParameter( dimension, "FixedImageDimension", 0, true, dummyErrorMessage );
/** Get coefficient image information. */
SizeType gridSize; gridSize.Fill( 1 );
IndexType gridIndex; gridIndex.Fill( 0 );
SpacingType gridSpacing; gridSpacing.Fill( 1.0 );
OriginType gridOrigin; gridOrigin.Fill( 0.0 );
DirectionType gridDirection; gridDirection.SetIdentity();
for( unsigned int i = 0; i < dimension; i++ )
{
config->ReadParameter( gridSize[ i ], "GridSize", i, true, dummyErrorMessage );
config->ReadParameter( gridIndex[ i ], "GridIndex", i, true, dummyErrorMessage );
config->ReadParameter( gridSpacing[ i ], "GridSpacing", i, true, dummyErrorMessage );
config->ReadParameter( gridOrigin[ i ], "GridOrigin", i, true, dummyErrorMessage );
for( unsigned int j = 0; j < dimension; j++ )
{
config->ReadParameter( gridDirection( j, i ),
"GridDirection", i * dimension + j, true, dummyErrorMessage );
}
}
/** Create the coefficient image. */
CoefficientImageType::Pointer coefImage = CoefficientImageType::New();
RegionType region; region.SetSize( gridSize ); region.SetIndex( gridIndex );
coefImage->SetRegions( region );
coefImage->SetSpacing( gridSpacing );
coefImage->SetOrigin( gridOrigin );
coefImage->SetDirection( gridDirection );
coefImage->Allocate();
/** Read the mask image, if given. */
MaskImageType::Pointer maskImage;
MaskIteratorType itM;
if( maskFileName != "" )
{
MaskReaderType::Pointer maskReader = MaskReaderType::New();
maskReader->SetFileName( maskFileName );
maskReader->Update();
maskImage = maskReader->GetOutput();
itM = MaskIteratorType( maskImage, maskImage->GetLargestPossibleRegion() );
}
/** Fill the coefficient image with the difference of the B-spline
* parameters. Since there are dimension number of differences,
* we take the norm.
*/
IteratorType it( coefImage, coefImage->GetLargestPossibleRegion() );
unsigned int index = 0; float include = 0.0; bool isInside = false;
IndexType indexInCoefficientImage;
IndexType indexInMaskImage;
PointType physicalPoint;
const unsigned int numberParPerDim = numberOfParametersTest / dimension;
while( !it.IsAtEnd() )
{
/** Voxel content. */
ScalarType diffNormTmp = itk::NumericTraits< ScalarType >::Zero;
for( unsigned int i = 0; i < dimension; i++ )
{
unsigned int j = index + i * numberParPerDim;
diffNormTmp += vnl_math::sqr( parametersBaseline[ j ] - parametersTest[ j ] );
}
diffNormTmp = std::sqrt( diffNormTmp );
it.Set( diffNormTmp );
/** Compare. */
include = 1.0;
if( maskFileName != "" )
{
indexInCoefficientImage = it.GetIndex();
coefImage->TransformIndexToPhysicalPoint( indexInCoefficientImage, physicalPoint );
isInside = maskImage->TransformPhysicalPointToIndex( physicalPoint, indexInMaskImage );
itM.SetIndex( indexInMaskImage );
if( isInside && itM.Value() == 0 ) { include = 0.0; }
} // end mask
for( unsigned int i = 0; i < dimension; i++ )
{
unsigned int j = index + i * numberParPerDim;
baselineNorm += include * vnl_math::sqr( parametersBaseline[ j ] );
diffNorm += include * vnl_math::sqr( parametersBaseline[ j ] - parametersTest[ j ] );
}
/** Update iterators. */
++it; ++index;
if( maskFileName != "" ) { ++itM; }
} // end while
/** Final normalized norm. */
diffNormNormalized = std::sqrt( diffNorm ) / std::sqrt( baselineNorm );
/** Create name for difference image. */
std::string diffImageFileName
= itksys::SystemTools::GetFilenamePath( testFileName );
if( diffImageFileName != "" ) { diffImageFileName += "/"; }
diffImageFileName
+= itksys::SystemTools::GetFilenameWithoutLastExtension( testFileName );
diffImageFileName += "_DIFF_PAR.mha";
/** Write the difference image. */
if( diffNormNormalized > 1e-10 )
{
WriterType::Pointer writer = WriterType::New();
writer->SetFileName( diffImageFileName );
writer->SetInput( coefImage );
try
{
writer->Write();
}
catch( itk::ExceptionObject & err )
{
std::cerr << "Error during writing difference image: " << err << std::endl;
return EXIT_FAILURE;
}
}
} // end B-spline
/** Print result to screen. */
std::cerr << "The norm of the difference between baseline and test "
<< "transform parameters was computed, using\n"
<< " || baseline - test ||\n"
<< " ---------------------\n"
<< " || baseline ||\n";
std::cerr << "Computed difference: "
<< std::sqrt( diffNorm ) << " / " << std::sqrt( baselineNorm ) << " = "
<< diffNormNormalized << std::endl;
std::cerr << "Allowed difference: " << allowedTolerance << std::endl;
/** Return. */
if( diffNormNormalized > allowedTolerance )
{
std::cerr << "ERROR: The difference is larger than acceptable!" << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
} // end main
|