1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
/*=========================================================================
*
* Copyright UMC Utrecht and contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkBSplineDerivativeKernelFunction.h"
#include "itkBSplineDerivativeKernelFunction2.h"
#include "itkKernelFunctionBase.h"
#include <ctime>
#include <iomanip>
//-------------------------------------------------------------------------------------
int
main( int argc, char * argv[] )
{
/** Some basic type definitions. */
std::vector< unsigned int > splineOrders;
splineOrders.push_back( 1 );
splineOrders.push_back( 2 );
splineOrders.push_back( 3 );
/** The number of calls to Evaluate(). This number gives reasonably
* fast test results in Release mode.
* Increase it for real time testing.
*/
unsigned int N = static_cast< unsigned int >( 1e7 );
const double maxAllowedDistance = 1e-5; // the allowable distance
/** Other typedefs. */
typedef itk::KernelFunctionBase< double > BaseKernelType;
typedef itk::BSplineDerivativeKernelFunction< 1 > KernelType_ITK_1;
typedef itk::BSplineDerivativeKernelFunction2< 1 > KernelType_elx_1;
typedef itk::BSplineDerivativeKernelFunction< 2 > KernelType_ITK_2;
typedef itk::BSplineDerivativeKernelFunction2< 2 > KernelType_elx_2;
typedef itk::BSplineDerivativeKernelFunction< 3 > KernelType_ITK_3;
typedef itk::BSplineDerivativeKernelFunction2< 3 > KernelType_elx_3;
/** Create the evaluation points. */
//const unsigned int size_u = 17;
std::vector< double > u;
u.push_back( -2.5 );
u.push_back( -2.0 );
u.push_back( -1.9 );
u.push_back( -1.5 );
u.push_back( -1.0 );
u.push_back( -0.8 );
u.push_back( -0.5 );
u.push_back( -0.1 );
u.push_back( 0.0 );
for( int i = static_cast< int >( u.size() ) - 2; i > -1; --i )
{
u.push_back( -u[ i ] );
}
/** For all spline orders. */
for( unsigned int so = 0; so < splineOrders.size(); so++ )
{
std::cerr << "Evaluating spline order " << splineOrders[ so ] << std::endl;
/** Create the kernel. */
BaseKernelType::Pointer kernel_ITK, kernel_elx;
if( splineOrders[ so ] == 1 )
{
kernel_ITK = KernelType_ITK_1::New();
kernel_elx = KernelType_elx_1::New();
}
else if( splineOrders[ so ] == 2 )
{
kernel_ITK = KernelType_ITK_2::New();
kernel_elx = KernelType_elx_2::New();
}
else if( splineOrders[ so ] == 3 )
{
kernel_ITK = KernelType_ITK_3::New();
kernel_elx = KernelType_elx_3::New();
}
else
{
std::cerr << "ERROR: spline order " << splineOrders[ so ]
<< " not defined." << std::endl;
return 1;
}
/** Print header. */
std::cerr << "eval at:";
for( unsigned int j = 0; j < u.size(); j++ )
{
std::cerr << " " << u[ j ];
}
std::cerr << " average" << std::endl;
/** Time the ITK implementation. */
std::cerr << "ITK new:";
clock_t startClock = clock();
for( unsigned int j = 0; j < u.size(); j++ )
{
clock_t startClockRegion = clock();
for( unsigned int i = 0; i < N; ++i )
{
kernel_ITK->Evaluate( u[ j ] );
}
std::cerr << " " << ( clock() - startClockRegion ) * 1000.0 / CLOCKS_PER_SEC;
}
clock_t endClock = clock();
clock_t clockDiff = endClock - startClock;
std::cerr << " " << clockDiff * 1000.0 / CLOCKS_PER_SEC << " ms" << std::endl;
/** Time the elx implementation. */
std::cerr << "elastix:";
startClock = clock();
for( unsigned int j = 0; j < u.size(); j++ )
{
clock_t startClockRegion = clock();
for( unsigned int i = 0; i < N; ++i )
{
kernel_elx->Evaluate( u[ j ] );
}
std::cerr << " " << ( clock() - startClockRegion ) * 1000.0 / CLOCKS_PER_SEC;
}
endClock = clock();
clockDiff = endClock - startClock;
std::cerr << " " << clockDiff * 1000.0 / CLOCKS_PER_SEC << " ms" << std::endl;
/** Compare the results. */
for( unsigned int i = 0; i < u.size(); ++i )
{
double diff = kernel_ITK->Evaluate( u[ i ] ) - kernel_elx->Evaluate( u[ i ] );
if( diff > maxAllowedDistance )
{
std::cerr << "ERROR: our implementation differs from ITK." << std::endl;
return 1;
}
}
std::cerr << "The results are good.\n" << std::endl;
} // end for all spline orders
/** Return a value. */
return 0;
} // end main
|