File: itkGPUSmoothingRecursiveGaussianImageFilterTest.cxx

package info (click to toggle)
elastix 5.0.1-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 56,288 kB
  • sloc: cpp: 61,192; lisp: 4,121; python: 777; sh: 227; xml: 182; makefile: 35
file content (242 lines) | stat: -rw-r--r-- 7,852 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
/*=========================================================================
 *
 *  Copyright UMC Utrecht and contributors
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *        http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#include "itkTestHelper.h"

// GPU includes
#include "itkGPUImageFactory.h"
#include "itkGPURecursiveGaussianImageFilterFactory.h"
#include "itkGPUCastImageFilterFactory.h" // used internally in smoothing filter

// ITK include files
#include "itkSmoothingRecursiveGaussianImageFilter.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkImageRegionConstIterator.h"
#include "itkTimeProbe.h"

#include <iomanip> // setprecision, etc.

//------------------------------------------------------------------------------
// This test compares the CPU with the GPU version of the
// SmoothingRecursiveGaussianImageFilter.
// The filter takes an input image and produces an output image.
// We compare the CPU and GPU output image write RMSE and speed.

int
main( int argc, char * argv[] )
{
  // Check arguments for help
  if( argc < 4 )
  {
    std::cerr << "ERROR: insufficient command line arguments.\n"
              << "  inputFileName outputNameCPU outputNameGPU" << std::endl;
    return EXIT_FAILURE;
  }

  // Setup for debugging
  itk::SetupForDebugging();

  // Create and check OpenCL context
  if( !itk::CreateContext() )
  {
    return EXIT_FAILURE;
  }

  /** Get the command line arguments. */
  const std::string  inputFileName     = argv[ 1 ];
  const std::string  outputFileNameCPU = argv[ 2 ];
  const std::string  outputFileNameGPU = argv[ 3 ];
  const double       epsilon           = 1e-3;
  const unsigned int runTimes          = 5;

  std::cout << std::showpoint << std::setprecision( 4 );

  // Typedefs.
  const unsigned int Dimension = 3;
  typedef float                                    InputPixelType;
  typedef float                                    OutputPixelType;
  typedef itk::Image< InputPixelType, Dimension >  InputImageType;
  typedef itk::Image< OutputPixelType, Dimension > OutputImageType;

  // CPU Typedefs
  typedef itk::SmoothingRecursiveGaussianImageFilter
    < InputImageType, OutputImageType >           FilterType;
  typedef itk::ImageFileReader< InputImageType >  ReaderType;
  typedef itk::ImageFileWriter< OutputImageType > WriterType;

  // Reader
  ReaderType::Pointer reader = ReaderType::New();
  reader->SetFileName( inputFileName );
  reader->Update();

  // Construct the filter
  FilterType::Pointer        filter = FilterType::New();
  FilterType::SigmaArrayType sigmaArray;
  for( unsigned int i = 0; i < Dimension; i++ )
  {
    sigmaArray[ i ] = 3.0;
  }
  filter->SetSigmaArray( sigmaArray );

  std::cout << "Testing the SmoothingRecursiveGaussianImageFilter, CPU vs GPU:\n";
  std::cout << "CPU/GPU sigma #threads time speedup RMSE\n";

  // Time the filter, run on the CPU
  itk::TimeProbe cputimer;
  cputimer.Start();
  for( unsigned int i = 0; i < runTimes; i++ )
  {
    filter->SetInput( reader->GetOutput() );
    try
    {
      filter->Update();
    }
    catch( itk::ExceptionObject & e )
    {
      std::cerr << "ERROR: " << e << std::endl;
      itk::ReleaseContext();
      return EXIT_FAILURE;
    }
    filter->Modified();
  }
  cputimer.Stop();

  std::cout << "CPU " << sigmaArray[ 0 ]
            << " " << filter->GetNumberOfWorkUnits()
            << " " << cputimer.GetMean() / runTimes;

  /** Write the CPU result. */
  WriterType::Pointer writer = WriterType::New();
  writer->SetInput( filter->GetOutput() );
  writer->SetFileName( outputFileNameCPU.c_str() );
  try
  {
    writer->Update();
  }
  catch( itk::ExceptionObject & e )
  {
    std::cerr << "ERROR: " << e << std::endl;
    itk::ReleaseContext();
    return EXIT_FAILURE;
  }

  // Register object factory for GPU image and filter
  // All these filters that are constructed after this point are
  // turned into a GPU filter.
  // Note that we are not registering a
  // GPUSmoothingRecursiveGaussianImageFilter,
  // but the recursive one. We are simply using the original ITK implementation,
  // that internally uses the recursive filter. By registering the recursive
  // filter, we now automatically use it, even if it's usage is hidden by a
  // wrapper.
  typedef typelist::MakeTypeList< float >::Type OCLImageTypes;
  itk::GPUImageFactory2< OCLImageTypes, OCLImageDims >
  ::RegisterOneFactory();
  itk::GPURecursiveGaussianImageFilterFactory2< OCLImageTypes, OCLImageTypes, OCLImageDims >
  ::RegisterOneFactory();
  itk::GPUCastImageFilterFactory2< OCLImageTypes, OCLImageTypes, OCLImageDims >
  ::RegisterOneFactory();

  // Construct the filter
  // Use a try/catch, because construction of this filter will trigger
  // OpenCL compilation, which may fail.
  FilterType::Pointer gpuFilter;
  try
  {
    gpuFilter = FilterType::New();
    itk::ITKObjectEnableWarnings( gpuFilter.GetPointer() );
  }
  catch( itk::ExceptionObject & e )
  {
    std::cerr << "ERROR: " << e << std::endl;
    itk::ReleaseContext();
    return EXIT_FAILURE;
  }
  gpuFilter->SetSigmaArray( sigmaArray );

  // Also need to re-construct the image reader, so that it now
  // reads a GPUImage instead of a normal image.
  // Otherwise, you will get an exception when running the GPU filter:
  // "ERROR: The GPU InputImage is NULL. Filter unable to perform."
  ReaderType::Pointer gpuReader = ReaderType::New();
  gpuReader->SetFileName( inputFileName );

  // \todo: If the following line is uncommented something goes wrong with
  // the ITK pipeline synchronization.
  // Something is still read in, but I guess it is not properly copied to
  // the GPU. The output of the shrink filter is then bogus.
  // The following line is however not needed in a pure CPU implementation.
  gpuReader->Update();

  // Time the filter, run on the GPU
  itk::TimeProbe gputimer;
  gputimer.Start();
  for( unsigned int i = 0; i < runTimes; i++ )
  {
    gpuFilter->SetInput( gpuReader->GetOutput() );
    try
    {
      gpuFilter->Update();
    }
    catch( itk::ExceptionObject & e )
    {
      std::cerr << "ERROR: " << e << std::endl;
      itk::ReleaseContext();
      return EXIT_FAILURE;
    }
    gpuFilter->Modified();
  }
  gputimer.Stop();

  std::cout << "GPU " << sigmaArray[ 0 ]
            << " x " << gputimer.GetMean() / runTimes
            << " " << cputimer.GetMean() / gputimer.GetMean();

  /** Write the GPU result. */
  WriterType::Pointer gpuWriter = WriterType::New();
  gpuWriter->SetInput( gpuFilter->GetOutput() );
  gpuWriter->SetFileName( outputFileNameGPU.c_str() );
  try
  {
    gpuWriter->Update();
  }
  catch( itk::ExceptionObject & e )
  {
    std::cerr << "ERROR: " << e << std::endl;
    itk::ReleaseContext();
    return EXIT_FAILURE;
  }

  // Compute RMSE
  double       RMSrelative = 0.0;
  const double RMSerror    = itk::ComputeRMSE< double, OutputImageType, OutputImageType >
      ( filter->GetOutput(), gpuFilter->GetOutput(), RMSrelative );
  std::cout << " " << RMSerror << std::endl;

  // Check
  if( RMSerror > epsilon )
  {
    std::cerr << "ERROR: RMSE between CPU and GPU result larger than expected" << std::endl;
    itk::ReleaseContext();
    return EXIT_FAILURE;
  }

  // End program.
  itk::ReleaseContext();
  return EXIT_SUCCESS;
} // end main()