1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
|
/*=========================================================================
*
* Copyright UMC Utrecht and contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "SplineKernelTransform/itkThinPlateSplineKernelTransform2.h"
#include "itkTransformixInputPointFileReader.h"
// Report timings
#include "itkTimeProbe.h"
#include "itkTimeProbesCollectorBase.h"
#include <fstream>
#include <iomanip>
#include "vnl/algo/vnl_qr.h"
//#include "vnl/algo/vnl_sparse_lu.h"
//#include "vnl/algo/vnl_cholesky.h"
#include "vnl/vnl_matlab_filewrite.h"
#include "vnl/vnl_matrix_fixed.h"
#include "vnl/vnl_sparse_matrix.h"
//-------------------------------------------------------------------------------------
// Helper class to be able to access protected functions and variables.
namespace itk
{
template< class TScalarType, unsigned int NDimensions >
class KernelTransformPublic :
public ThinPlateSplineKernelTransform2< TScalarType, NDimensions >
{
public:
typedef KernelTransformPublic Self;
typedef ThinPlateSplineKernelTransform2<
TScalarType, NDimensions > Superclass;
typedef SmartPointer< Self > Pointer;
typedef SmartPointer< const Self > ConstPointer;
itkTypeMacro( KernelTransformPublic, ThinPlateSplineKernelTransform2 );
itkNewMacro( Self );
typedef typename Superclass::PointSetType PointSetType;
typedef typename Superclass::LMatrixType LMatrixType;
typedef typename Superclass::GMatrixType GMatrixType;
typedef typename Superclass::InputVectorType InputVectorType;
void SetSourceLandmarksPublic( PointSetType * landmarks )
{
this->m_SourceLandmarks = landmarks;
this->m_WMatrixComputed = false;
this->m_LMatrixComputed = false;
this->m_LInverseComputed = false;
}
void ComputeLPublic( void )
{
this->ComputeL();
}
LMatrixType GetLMatrix( void ) const
{
return this->m_LMatrix;
}
void ComputeGPublic( const InputVectorType & landmarkVector,
GMatrixType & GMatrix ) const
{
this->ComputeG( landmarkVector, GMatrix );
}
};
// end helper class
} // end namespace itk
//-------------------------------------------------------------------------------------
// Test matrix inversion performance
// Test Jacobian computation performance
int
main( int argc, char * argv[] )
{
/** Some basic type definitions. */
const unsigned int Dimension = 3;
// ScalarType double needed for Cholesky. Double is used in elastix.
typedef double ScalarType;
const unsigned long maxTestedLandmarksForSVD = 401;
const ScalarType tolerance = 1e-8; // for double
/** Check. */
if( argc != 3 )
{
std::cerr << "ERROR: You should specify a text file with the thin plate spline "
<< "source (fixed image) landmarks." << std::endl;
return 1;
}
/** Other typedefs. */
typedef itk::KernelTransformPublic<
ScalarType, Dimension > TransformType;
typedef TransformType::JacobianType JacobianType;
typedef TransformType::NonZeroJacobianIndicesType NonZeroJacobianIndicesType;
typedef TransformType::PointSetType PointSetType;
typedef itk::TransformixInputPointFileReader<
PointSetType > IPPReaderType;
typedef PointSetType::PointsContainer PointsContainerType;
typedef PointsContainerType::Pointer PointsContainerPointer;
typedef PointSetType::PointType PointType;
typedef TransformType::LMatrixType LMatrixType;
PointSetType::Pointer dummyLandmarks = PointSetType::New();
/** Create the kernel transform. */
TransformType::Pointer kernelTransform = TransformType::New();
kernelTransform->SetStiffness( 0.0 ); // interpolating
/** Read landmarks. */
IPPReaderType::Pointer ippReader = IPPReaderType::New();
ippReader->SetFileName( argv[ 1 ] );
try
{
ippReader->Update();
}
catch( itk::ExceptionObject & excp )
{
std::cerr << " Error while opening input point file." << std::endl;
std::cerr << excp << std::endl;
return 1;
}
// Expect points, not indices.
if( ippReader->GetPointsAreIndices() )
{
std::cerr << "ERROR: landmarks should be specified as points (not indices)"
<< std::endl;
return 1;
}
/** Get the set of input points. */
PointSetType::Pointer sourceLandmarks = ippReader->GetOutput();
//const unsigned long realNumberOfLandmarks = ippReader->GetNumberOfPoints();
std::vector< unsigned long > usedNumberOfLandmarks;
usedNumberOfLandmarks.push_back( 100 );
usedNumberOfLandmarks.push_back( 200 );
// usedNumberOfLandmarks.push_back( 500 );
// usedNumberOfLandmarks.push_back( 1000 );
// usedNumberOfLandmarks.push_back( realNumberOfLandmarks );
std::cerr << "Matrix scalar type: "
<< typeid( ScalarType ).name() << "\n" << std::endl;
// Loop over usedNumberOfLandmarks
for( std::size_t i = 0; i < usedNumberOfLandmarks.size(); i++ )
{
itk::TimeProbesCollectorBase timeCollector;
unsigned long numberOfLandmarks = usedNumberOfLandmarks[ i ];
std::cerr << "----------------------------------------\n";
std::cerr << "Number of specified landmarks: "
<< numberOfLandmarks << std::endl;
/** Get subset. */
PointsContainerPointer usedLandmarkPoints = PointsContainerType::New();
PointSetType::Pointer usedLandmarks = PointSetType::New();
for( unsigned long j = 0; j < numberOfLandmarks; j++ )
{
PointType tmp = ( *sourceLandmarks->GetPoints() )[ j ];
usedLandmarkPoints->push_back( tmp );
}
usedLandmarks->SetPoints( usedLandmarkPoints );
/** Set the ipp as source landmarks.
* 1) Compute L matrix
* 2) Compute inverse of L
*/
LMatrixType lMatrixInverse1, lMatrixInverse2; //, lMatrixInverse4;
/** Task 1: compute L. */
timeCollector.Start( "ComputeL" );
kernelTransform->SetSourceLandmarksPublic( usedLandmarks );
kernelTransform->ComputeLPublic();
LMatrixType lMatrix = kernelTransform->GetLMatrix();
timeCollector.Stop( "ComputeL" );
/** Task 2: Compute L inverse. */
if( numberOfLandmarks < maxTestedLandmarksForSVD )
{
// Method 1: Singular Value Decomposition
timeCollector.Start( "ComputeLInverseBySVD" );
lMatrixInverse1 = vnl_svd< ScalarType >( lMatrix ).inverse();
timeCollector.Stop( "ComputeLInverseBySVD" );
}
else
{
std::cerr << "L matrix inversion (method 1, svd) took: too long" << std::endl;
}
// Method 2: QR Decomposition
timeCollector.Start( "ComputeLInverseByQR" );
lMatrixInverse2 = vnl_qr< ScalarType >( lMatrix ).inverse();
timeCollector.Stop( "ComputeLInverseByQR" );
// Method 3: Cholesky decomposition
// Cholesky decomposition does not work due to lMatrix not being positive definite.
// startClock = clock();
// LMatrixType lMatrixInverse3 = vnl_cholesky( lMatrix,
// vnl_cholesky::Operation::estimate_condition ).inverse();
// std::cerr << "L matrix inversion (method 3, cholesky ) took: "
// << clock() - startClock << " ms." << std::endl;
/** The following code is out-commented.
* It is used to test LU decomposition, which in vnl is only implemented
* for sparse matrices. It also depends on a local modification of the
* vnl_sparse_lu claas, where a method invert() was implemented similar
* to the invert() of vnl_qr.inverse().
*/
// // Convert to sparse matrix
// startClock = clock();
// LSparseMatrixType lSparseMatrix( lMatrix.rows(), lMatrix.cols() );
// for ( unsigned int r = 0; r < lMatrix.rows(); r++ )
// {
// for ( unsigned int c = 0; c < lMatrix.cols(); c++ )
// {
// ScalarType val = lMatrix.get( r, c );
// if ( val != 0 )
// {
// lSparseMatrix( r, c ) = val;
// }
// }
// }
// std::cerr << "Conversion to sparse matrix took: "
// << clock() - startClock << " ms." << std::endl;
//
// // Method 4: LU Decomposition
// // Depends on local ITK vnl_sparse_lu modification
// startClock = clock();
// lMatrixInverse4 = vnl_sparse_lu( lSparseMatrix ).inverse();
// std::cerr << "L matrix inversion (method 4, lu) took: "
// << clock() - startClock << " ms." << std::endl;
/** Compute error compared to SVD. */
if( numberOfLandmarks < maxTestedLandmarksForSVD )
{
double diff_qr = ( lMatrixInverse1 - lMatrixInverse2 ).frobenius_norm();
//double diff_lu = (lMatrixInverse1a - lMatrixInverse4).frobenius_norm();
std::cerr << "Frobenius difference of method 2 with SVD: "
<< diff_qr << std::endl;
//std::cerr << "Frobenius difference of method 4 with SVD: " << diff_lu << std::endl;
if( diff_qr > tolerance )
{
std::cerr
<< "ERROR: Frobenius difference of matrix inversion methods too big: "
<< diff_qr << std::endl;
return 1;
}
}
else
{
std::cerr << "Frobenius difference of method 2,4 with SVD: unknown" << std::endl;
}
// startClock = clock();
// LMatrixType lMatrixInverse3 = vnl_lu<ScalarType>( kernelTransform->GetLMatrix() ).inverse();
// std::cerr << "L matrix inversion (method 2, lu ) took: "
// << clock() - startClock << " ms." << std::endl;
// To do: Add SuiteSparse tests.
// Write L Matrix to Matlab file. For inspection of matrix appearance.
std::ostringstream makeFileName( "" );
makeFileName << argv[ 2 ]
<< "/LMatrix_N"
<< numberOfLandmarks << ".mat";
vnl_matlab_filewrite matlabWriter( makeFileName.str().c_str() );
matlabWriter.write( lMatrix, "lMatrix" );
matlabWriter.write( lMatrixInverse2, "lMatrixInverseQR" );
//
// Test Jacobian computation performance
typedef vnl_matrix_fixed< ScalarType, Dimension, Dimension > GMatrixType;
GMatrixType Gmatrix; // dim x dim
typedef PointSetType::PointsContainerIterator PointsIterator;
// OLD way:
PointType p; p[ 0 ] = 10.0; p[ 1 ] = 13.0; p[ 2 ] = 11.0;
timeCollector.Start( "ComputeJacobianOLD" );
JacobianType jac1;
jac1.SetSize( Dimension, numberOfLandmarks * Dimension );
jac1.Fill( 0.0 );
PointsIterator sp = usedLandmarks->GetPoints()->Begin();
for( unsigned int lnd = 0; lnd < numberOfLandmarks; lnd++ )
{
kernelTransform->ComputeGPublic( p - sp->Value(), Gmatrix );
for( unsigned int dim = 0; dim < Dimension; dim++ )
{
for( unsigned int odim = 0; odim < Dimension; odim++ )
{
for( unsigned int lidx = 0; lidx < numberOfLandmarks * Dimension; lidx++ )
{
jac1[ odim ][ lidx ] += Gmatrix( dim, odim )
* lMatrixInverse2[ lnd * Dimension + dim ][ lidx ];
}
}
}
++sp;
}
for( unsigned int odim = 0; odim < Dimension; odim++ )
{
for( unsigned long lidx = 0; lidx < numberOfLandmarks * Dimension; lidx++ )
{
for( unsigned int dim = 0; dim < Dimension; dim++ )
{
jac1[ odim ][ lidx ] += p[ dim ]
* lMatrixInverse2[ ( numberOfLandmarks + dim ) * Dimension + odim ][ lidx ];
}
const unsigned long index = ( numberOfLandmarks + Dimension ) * Dimension + odim;
jac1[ odim ][ lidx ] += lMatrixInverse2[ index ][ lidx ];
}
}
timeCollector.Stop( "ComputeJacobianOLD" );
// NEW way:
/** Reset source landmarks, otherwise L is not recomputed. */
kernelTransform->SetSourceLandmarks( dummyLandmarks );
kernelTransform->SetSourceLandmarks( usedLandmarks );
timeCollector.Start( "ComputeJacobianNEW" );
JacobianType jac2;
NonZeroJacobianIndicesType nzji;
kernelTransform->GetJacobian( p, jac2, nzji );
timeCollector.Stop( "ComputeJacobianNEW" );
// diff
double diff_jac = ( jac1 - jac2 ).frobenius_norm();
std::cerr << "Frobenius difference of jacs: " << diff_jac << std::endl;
if( diff_jac > tolerance )
{
std::cerr << "ERROR: Frobenius difference of Jacobian computation too big: " << diff_jac << std::endl;
return 1;
}
// Report timings
timeCollector.Report();
std::cout << std::endl;
} // end loop
/** Return a value. */
return 0;
} // end main
|