File: itkParzenWindowHistogramImageToImageMetric.h

package info (click to toggle)
elastix 5.2.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 42,480 kB
  • sloc: cpp: 68,403; lisp: 4,118; python: 1,013; xml: 182; sh: 177; makefile: 33
file content (514 lines) | stat: -rw-r--r-- 22,941 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
/*=========================================================================
 *
 *  Copyright UMC Utrecht and contributors
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *        http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkParzenWindowHistogramImageToImageMetric_h
#define itkParzenWindowHistogramImageToImageMetric_h

#include "itkAdvancedImageToImageMetric.h"
#include "itkKernelFunctionBase2.h"
#include <vector>


namespace itk
{
/**
 * \class ParzenWindowHistogramImageToImageMetric
 * \brief A base class for image metrics based on a joint histogram
 * computed using Parzen Windowing
 *
 * The calculations are based on the method of Mattes/Thevenaz/Unser [1,2,3]
 * where the probability density distribution are estimated using
 * Parzen histograms.
 *
 * Once the PDF's have been constructed, the metric value and derivative
 * can be computed. Inheriting classes should make sure to call
 * the function ComputePDFs(AndPDFDerivatives) before using m_JointPDF and m_Alpha
 * (and m_JointPDFDerivatives).
 *
 * This class does not define the GetValue/GetValueAndDerivative methods.
 * This is the task of inheriting classes.
 *
 * The code is based on the itk::MattesMutualInformationImageToImageMetric,
 * but largely rewritten. Some important features:
 *  - It inherits from AdvancedImageToImageMetric, which provides a lot of
 *    general functionality.
 *  - It splits up some functions in subfunctions.
 *  - The Parzen window order can be chosen.
 *  - A fixed and moving number of histogram bins can be chosen.
 *  - More use of iterators instead of raw buffer pointers.
 *  - An optional FiniteDifference derivative estimation.
 *
 * \warning This class is not thread safe due the member data structures
 *  used to the store the sampled points and the marginal and joint pdfs.
 *
 * References:\n
 * [1] "Nonrigid multimodality image registration"\n
 *      D. Mattes, D. R. Haynor, H. Vesselle, T. Lewellen and W. Eubank\n
 *      Medical Imaging 2001: Image Processing, 2001, pp. 1609-1620.\n
 * [2] "PET-CT Image Registration in the Chest Using Free-form Deformations"\n
 *      D. Mattes, D. R. Haynor, H. Vesselle, T. Lewellen and W. Eubank\n
 *      IEEE Transactions in Medical Imaging. To Appear.\n
 * [3] "Optimization of Mutual Information for MultiResolution Image
 *      Registration"\n
 *      P. Thevenaz and M. Unser\n
 *      IEEE Transactions in Image Processing, 9(12) December 2000.\n
 *
 *
 * \ingroup Metrics
 */

template <class TFixedImage, class TMovingImage>
class ITK_TEMPLATE_EXPORT ParzenWindowHistogramImageToImageMetric
  : public AdvancedImageToImageMetric<TFixedImage, TMovingImage>
{
public:
  ITK_DISALLOW_COPY_AND_MOVE(ParzenWindowHistogramImageToImageMetric);

  /** Standard class typedefs. */
  using Self = ParzenWindowHistogramImageToImageMetric;
  using Superclass = AdvancedImageToImageMetric<TFixedImage, TMovingImage>;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;

  /** Run-time type information (and related methods). */
  itkTypeMacro(ParzenWindowHistogramImageToImageMetric, AdvancedImageToImageMetric);

  /** Typedefs from the superclass. */
  using typename Superclass::CoordinateRepresentationType;
  using typename Superclass::MovingImageType;
  using typename Superclass::MovingImagePixelType;
  using typename Superclass::MovingImageConstPointer;
  using typename Superclass::FixedImageType;
  using typename Superclass::FixedImageConstPointer;
  using typename Superclass::FixedImageRegionType;
  using typename Superclass::TransformType;
  using typename Superclass::TransformPointer;
  using typename Superclass::InputPointType;
  using typename Superclass::OutputPointType;
  using typename Superclass::TransformParametersType;
  using typename Superclass::TransformJacobianType;
  using typename Superclass::InterpolatorType;
  using typename Superclass::InterpolatorPointer;
  using typename Superclass::RealType;
  using typename Superclass::GradientPixelType;
  using typename Superclass::GradientImageType;
  using typename Superclass::GradientImagePointer;
  using typename Superclass::FixedImageMaskType;
  using typename Superclass::FixedImageMaskPointer;
  using typename Superclass::MovingImageMaskType;
  using typename Superclass::MovingImageMaskPointer;
  using typename Superclass::MeasureType;
  using typename Superclass::DerivativeType;
  using typename Superclass::DerivativeValueType;
  using typename Superclass::ParametersType;
  using typename Superclass::FixedImagePixelType;
  using typename Superclass::MovingImageRegionType;
  using typename Superclass::ImageSamplerType;
  using typename Superclass::ImageSamplerPointer;
  using typename Superclass::ImageSampleContainerType;
  using typename Superclass::ImageSampleContainerPointer;
  using typename Superclass::FixedImageLimiterType;
  using typename Superclass::MovingImageLimiterType;
  using typename Superclass::FixedImageLimiterOutputType;
  using typename Superclass::MovingImageLimiterOutputType;
  using typename Superclass::MovingImageDerivativeScalesType;
  using typename Superclass::ThreadInfoType;

  /** The fixed image dimension. */
  itkStaticConstMacro(FixedImageDimension, unsigned int, FixedImageType::ImageDimension);

  /** The moving image dimension. */
  itkStaticConstMacro(MovingImageDimension, unsigned int, MovingImageType::ImageDimension);

  /** Initialize the Metric by
   * (1) Call the superclass' implementation
   * (2) InitializeHistograms()
   * (3) InitializeKernels()
   * (4) Resize AlphaDerivatives
   */
  void
  Initialize() override;

  /** Get the derivatives of the match measure. This method simply calls the
   * the GetValueAndDerivative, since this will be mostly almost as fast
   * as just computing the derivative.
   */
  void
  GetDerivative(const ParametersType & parameters, DerivativeType & Derivative) const override;

  /**  Get the value and derivatives for single valued optimizers.
   * This method calls this->GetValueAndAnalyticDerivative or
   * this->GetValueAndFiniteDifferenceDerivative, depending on the bool
   * m_UseFiniteDifferenceDerivative.
   */
  void
  GetValueAndDerivative(const ParametersType & parameters,
                        MeasureType &          value,
                        DerivativeType &       derivative) const override;

  /** Number of bins to use for the fixed image in the histogram.
   * Typical value is 32.  The minimum value is 4 due to the padding
   * required by the Parzen windowing with a cubic B-spline kernel. Note
   * that even if the metric is used on binary images, the number of bins
   * should at least be equal to four.
   */
  itkSetClampMacro(NumberOfFixedHistogramBins, unsigned long, 4, NumericTraits<unsigned long>::max());
  itkGetConstMacro(NumberOfFixedHistogramBins, unsigned long);

  /** Number of bins to use for the moving image in the histogram.
   * Typical value is 32.  The minimum value is 4 due to the padding
   * required by the Parzen windowing with a cubic B-spline kernel. Note
   * that even if the metric is used on binary images, the number of bins
   * should at least be equal to four.
   */
  itkSetClampMacro(NumberOfMovingHistogramBins, unsigned long, 4, NumericTraits<unsigned long>::max());
  itkGetConstMacro(NumberOfMovingHistogramBins, unsigned long);

  /** The B-spline order of the fixed Parzen window; default: 0 */
  itkSetClampMacro(FixedKernelBSplineOrder, unsigned int, 0, 3);
  itkGetConstMacro(FixedKernelBSplineOrder, unsigned int);

  /** The B-spline order of the moving B-spline order; default: 3 */
  itkSetClampMacro(MovingKernelBSplineOrder, unsigned int, 0, 3);
  itkGetConstMacro(MovingKernelBSplineOrder, unsigned int);

  /** Option to use explicit PDF derivatives, which requires a lot
   * of memory in case of many parameters.
   */
  itkSetMacro(UseExplicitPDFDerivatives, bool);
  itkGetConstReferenceMacro(UseExplicitPDFDerivatives, bool);
  itkBooleanMacro(UseExplicitPDFDerivatives);

  /** Whether you plan to call the GetDerivative/GetValueAndDerivative method or not.
   * This option should be set before calling Initialize(); Default: false.
   */
  itkSetMacro(UseDerivative, bool);
  itkGetConstMacro(UseDerivative, bool);

  /** Whether you want to use a finite difference implementation of the metric's derivative.
   * This option should be set before calling Initialize(); Default: false.
   */
  itkSetMacro(UseFiniteDifferenceDerivative, bool);
  itkGetConstMacro(UseFiniteDifferenceDerivative, bool);

  /** For computing the finite difference derivative, the perturbation (delta) of the
   * transform parameters; default: 1.0.
   * mu_right= mu + delta*e_k
   */
  itkSetMacro(FiniteDifferencePerturbation, double);
  itkGetConstMacro(FiniteDifferencePerturbation, double);

protected:
  /** The constructor. */
  ParzenWindowHistogramImageToImageMetric();

  /** The destructor. */
  ~ParzenWindowHistogramImageToImageMetric() override = default;

  /** Print Self. */
  void
  PrintSelf(std::ostream & os, Indent indent) const override;

  /** Protected Typedefs ******************/

  /** Typedefs inherited from superclass. */
  using typename Superclass::FixedImageIndexType;
  using typename Superclass::FixedImageIndexValueType;
  using OffsetValueType = typename FixedImageType::OffsetValueType;
  using typename Superclass::MovingImageIndexType;
  using typename Superclass::FixedImagePointType;
  using typename Superclass::MovingImagePointType;
  using typename Superclass::MovingImageContinuousIndexType;
  using typename Superclass::BSplineInterpolatorType;
  using typename Superclass::MovingImageDerivativeType;
  using typename Superclass::NonZeroJacobianIndicesType;

  /** Typedefs for the PDFs and PDF derivatives. */
  using PDFValueType = double;
  using PDFDerivativeValueType = float;
  using MarginalPDFType = Array<PDFValueType>;
  using JointPDFType = Image<PDFValueType, 2>;
  using JointPDFPointer = typename JointPDFType::Pointer;
  using JointPDFDerivativesType = Image<PDFDerivativeValueType, 3>;
  using JointPDFDerivativesPointer = typename JointPDFDerivativesType::Pointer;
  using IncrementalMarginalPDFType = Image<PDFValueType, 2>;
  using IncrementalMarginalPDFPointer = typename IncrementalMarginalPDFType::Pointer;
  using JointPDFIndexType = JointPDFType::IndexType;
  using JointPDFRegionType = JointPDFType::RegionType;
  using JointPDFSizeType = JointPDFType::SizeType;
  using JointPDFDerivativesIndexType = JointPDFDerivativesType::IndexType;
  using JointPDFDerivativesRegionType = JointPDFDerivativesType::RegionType;
  using JointPDFDerivativesSizeType = JointPDFDerivativesType::SizeType;
  using IncrementalMarginalPDFIndexType = IncrementalMarginalPDFType::IndexType;
  using IncrementalMarginalPDFRegionType = IncrementalMarginalPDFType::RegionType;
  using IncrementalMarginalPDFSizeType = IncrementalMarginalPDFType::SizeType;
  using ParzenValueContainerType = Array<PDFValueType>;

  /** Typedefs for Parzen kernel. */
  using KernelFunctionType = KernelFunctionBase2<PDFValueType>;
  using KernelFunctionPointer = typename KernelFunctionType::Pointer;

  /** Protected variables **************************** */

  /** Variables for Alpha (the normalization factor of the histogram). */
  mutable double         m_Alpha{ 0.0 };
  mutable DerivativeType m_PerturbedAlphaRight{};
  mutable DerivativeType m_PerturbedAlphaLeft{};

  /** Variables for the pdfs (actually: histograms). */
  mutable MarginalPDFType       m_FixedImageMarginalPDF{};
  mutable MarginalPDFType       m_MovingImageMarginalPDF{};
  JointPDFPointer               m_JointPDF{ nullptr };
  JointPDFDerivativesPointer    m_JointPDFDerivatives{ nullptr };
  JointPDFDerivativesPointer    m_IncrementalJointPDFRight{};
  JointPDFDerivativesPointer    m_IncrementalJointPDFLeft{};
  IncrementalMarginalPDFPointer m_FixedIncrementalMarginalPDFRight{ nullptr };
  IncrementalMarginalPDFPointer m_MovingIncrementalMarginalPDFRight{ nullptr };
  IncrementalMarginalPDFPointer m_FixedIncrementalMarginalPDFLeft{ nullptr };
  IncrementalMarginalPDFPointer m_MovingIncrementalMarginalPDFLeft{ nullptr };
  mutable JointPDFRegionType    m_JointPDFWindow{}; // no need for mutable anymore?
  double                        m_MovingImageNormalizedMin{ 0.0 };
  double                        m_FixedImageNormalizedMin{ 0.0 };
  double                        m_FixedImageBinSize{ 0.0 };
  double                        m_MovingImageBinSize{ 0.0 };
  double                        m_FixedParzenTermToIndexOffset{ 0.5 };
  double                        m_MovingParzenTermToIndexOffset{ -1.0 };

  /** Kernels for computing Parzen histograms and derivatives. */
  KernelFunctionPointer m_FixedKernel{ nullptr };
  KernelFunctionPointer m_MovingKernel{ nullptr };
  KernelFunctionPointer m_DerivativeMovingKernel{ nullptr };

  /** Initialize threading related parameters. */
  void
  InitializeThreadingParameters() const override;

  /** Multi-threaded versions of the ComputePDF function. */
  void
  ThreadedComputePDFs(ThreadIdType threadId);

  /** Single-threadedly accumulate results. */
  void
  AfterThreadedComputePDFs() const;

  /** Helper function to launch the threads. */
  static ITK_THREAD_RETURN_FUNCTION_CALL_CONVENTION
  ComputePDFsThreaderCallback(void * arg);

  /** Helper function to launch the threads. */
  void
  LaunchComputePDFsThreaderCallback() const;

  /** Compute the Parzen values given an image value and a starting histogram index
   * Compute the values at (parzenWindowIndex - parzenWindowTerm + k) for
   * k = 0 ... kernelsize-1
   * Places the values in a buffer, which is supposed to have the right size already.
   */
  static void
  EvaluateParzenValues(double                     parzenWindowTerm,
                       OffsetValueType            parzenWindowIndex,
                       const KernelFunctionType & kernel,
                       PDFValueType *             parzenValues);

  /** Update the joint PDF with a pixel pair; on demand also updates the
   * pdf derivatives (if the Jacobian pointers are nonzero).
   */
  virtual void
  UpdateJointPDFAndDerivatives(const RealType                     fixedImageValue,
                               const RealType                     movingImageValue,
                               const DerivativeType *             imageJacobian,
                               const NonZeroJacobianIndicesType * nzji,
                               JointPDFType *                     jointPDF) const;

  /** Update the joint PDF and the incremental pdfs.
   * The input is a pixel pair (fixed, moving, moving mask) and
   * a set of moving image/mask values when using mu+delta*e_k, for
   * each k that has a nonzero Jacobian. And for mu-delta*e_k of course.
   * Also updates the PerturbedAlpha's
   * This function is used when UseFiniteDifferenceDerivative is true.
   *
   * \todo The IsInsideMovingMask return bools are converted to doubles (1 or 0) to
   * simplify the computation. But this may not be necessary.
   */
  virtual void
  UpdateJointPDFAndIncrementalPDFs(RealType                           fixedImageValue,
                                   RealType                           movingImageValue,
                                   RealType                           movingMaskValue,
                                   const DerivativeType &             movingImageValuesRight,
                                   const DerivativeType &             movingImageValuesLeft,
                                   const DerivativeType &             movingMaskValuesRight,
                                   const DerivativeType &             movingMaskValuesLeft,
                                   const NonZeroJacobianIndicesType & nzji) const;

  /** Update the pdf derivatives
   * adds -image_jac[mu]*factor to the bin
   * with index [ mu, pdfIndex[0], pdfIndex[1] ] for all mu.
   * This function should only be called from UpdateJointPDFAndDerivatives.
   */
  void
  UpdateJointPDFDerivatives(const JointPDFIndexType &          pdfIndex,
                            double                             factor,
                            const DerivativeType &             imageJacobian,
                            const NonZeroJacobianIndicesType & nzji) const;

  /** Multiply the pdf entries by the given normalization factor. */
  void
  NormalizeJointPDF(JointPDFType * pdf, const double factor) const;

  /** Multiply the pdf derivatives entries by the given normalization factor. */
  void
  NormalizeJointPDFDerivatives(JointPDFDerivativesType * pdf, const double factor) const;

  /** Compute marginal pdfs by summing over the joint pdf
   * direction = 0: fixed marginal pdf
   * direction = 1: moving marginal pdf
   */
  void
  ComputeMarginalPDF(const JointPDFType * jointPDF, MarginalPDFType & marginalPDF, const unsigned int direction) const;

  /** Compute incremental marginal pdfs. Integrates the incremental PDF
   * to obtain the fixed and moving marginal pdfs at once.
   */
  virtual void
  ComputeIncrementalMarginalPDFs(const JointPDFDerivativesType * incrementalPDF,
                                 IncrementalMarginalPDFType *    fixedIncrementalMarginalPDF,
                                 IncrementalMarginalPDFType *    movingIncrementalMarginalPDF) const;

  /** Compute PDFs and pdf derivatives; Loops over the fixed image samples and constructs
   * the m_JointPDF, m_JointPDFDerivatives, and m_Alpha.
   * The JointPDF and Alpha and its derivatives are related as follows:
   * p = m_Alpha * m_JointPDF
   * dp/dmu = m_Alpha * m_JointPDFDerivatives
   * So, the JointPDF is more like a histogram than a true pdf...
   * The histograms are left unnormalized since it may be faster to
   * not do this explicitly.
   */
  virtual void
  ComputePDFsAndPDFDerivatives(const ParametersType & parameters) const;

  /** Compute PDFs and incremental pdfs (which you can use to compute finite
   * difference estimate of the derivative).
   * Loops over the fixed image samples and constructs the m_JointPDF,
   * m_IncrementalJointPDF<Right/Left>, m_Alpha, and m_PerturbedAlpha<Right/Left>.
   *
   * mu = input parameters vector
   * jh(mu) = m_JointPDF(:,:) = joint histogram
   * ihr(k) = m_IncrementalJointPDFRight(k,:,:)
   * ihl(k) = m_IncrementalJointPDFLeft(k,:,:)
   * a(mu) = m_Alpha
   * par(k) = m_PerturbedAlphaRight(k)
   * pal(k) = m_PerturbedAlphaLeft(k)
   * size(ihr) = = size(ihl) = nrofparams * nrofmovingbins * nroffixedbins
   *
   * ihr and ihl are determined such that:
   * jh(mu+delta*e_k) = jh(mu) + ihr(k)
   * jh(mu-delta*e_k) = jh(mu) + ihl(k)
   * where e_k is the unit vector.
   *
   * the pdf can be derived with:
   * p(mu+delta*e_k) = ( par(k) ) * jh(mu+delta*e_k)
   * p(mu-delta*e_k) = ( pal(k) ) * jh(mu-delta*e_k)
   */
  virtual void
  ComputePDFsAndIncrementalPDFs(const ParametersType & parameters) const;

  /** Compute PDFs; Loops over the fixed image samples and constructs
   * the m_JointPDF and m_Alpha
   * The JointPDF and Alpha are related as follows:
   * p = m_Alpha * m_JointPDF
   * So, the JointPDF is more like a histogram than a true pdf...
   * The histogram is left unnormalised since it may be faster to
   * not do this explicitly.
   */
  virtual void
  ComputePDFsSingleThreaded(const ParametersType & parameters) const;

  virtual void
  ComputePDFs(const ParametersType & parameters) const;

  /** Some initialization functions, called by Initialize. */
  virtual void
  InitializeHistograms();

  virtual void
  InitializeKernels();

  /** Get the value and analytic derivatives for single valued optimizers.
   * Called by GetValueAndDerivative if UseFiniteDifferenceDerivative == false
   * Implement this method in subclasses.
   */
  virtual void
  GetValueAndAnalyticDerivative(const ParametersType & itkNotUsed(parameters),
                                MeasureType &          itkNotUsed(value),
                                DerivativeType &       itkNotUsed(derivative)) const
  {}

  /** Get the value and finite difference derivatives for single valued optimizers.
   * Called by GetValueAndDerivative if UseFiniteDifferenceDerivative == true
   * Implement this method in subclasses.
   */
  virtual void
  GetValueAndFiniteDifferenceDerivative(const ParametersType & itkNotUsed(parameters),
                                        MeasureType &          itkNotUsed(value),
                                        DerivativeType &       itkNotUsed(derivative)) const
  {}

private:
  /** Threading related parameters. */
  mutable std::vector<JointPDFPointer> m_ThreaderJointPDFs{};

  /** Helper structs that multi-threads the computation of
   * the metric derivative using ITK threads.
   */
  struct ParzenWindowHistogramMultiThreaderParameterType // can't we use the one from AdvancedImageToImageMetric ?
  {
    Self * m_Metric;
  };
  ParzenWindowHistogramMultiThreaderParameterType m_ParzenWindowHistogramThreaderParameters{};

  struct ParzenWindowHistogramGetValueAndDerivativePerThreadStruct
  {
    SizeValueType   st_NumberOfPixelsCounted;
    JointPDFPointer st_JointPDF;
  };
  itkPadStruct(ITK_CACHE_LINE_ALIGNMENT,
               ParzenWindowHistogramGetValueAndDerivativePerThreadStruct,
               PaddedParzenWindowHistogramGetValueAndDerivativePerThreadStruct);
  itkAlignedTypedef(ITK_CACHE_LINE_ALIGNMENT,
                    PaddedParzenWindowHistogramGetValueAndDerivativePerThreadStruct,
                    AlignedParzenWindowHistogramGetValueAndDerivativePerThreadStruct);
  mutable std::vector<AlignedParzenWindowHistogramGetValueAndDerivativePerThreadStruct>
    m_ParzenWindowHistogramGetValueAndDerivativePerThreadVariables;

  /** Variables that can/should be accessed by their Set/Get functions. */
  unsigned long m_NumberOfFixedHistogramBins{ 32 };
  unsigned long m_NumberOfMovingHistogramBins{ 32 };
  unsigned int  m_FixedKernelBSplineOrder{ 0 };
  unsigned int  m_MovingKernelBSplineOrder{ 3 };
  bool          m_UseDerivative{ false };
  bool          m_UseExplicitPDFDerivatives{ true };
  bool          m_UseFiniteDifferenceDerivative{ false };
  double        m_FiniteDifferencePerturbation{ 1.0 };
};

} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#  include "itkParzenWindowHistogramImageToImageMetric.hxx"
#endif

#endif // end #ifndef itkParzenWindowHistogramImageToImageMetric_h