1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
/*=========================================================================
*
* Copyright UMC Utrecht and contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef elxGTestUtilities_h
#define elxGTestUtilities_h
#include <elxConfiguration.h>
#include <elxElastixBase.h>
#include <itkAdvancedImageToImageMetric.h>
#include <itkAdvancedTransform.h>
#include <itkImageSamplerBase.h>
// ITK header files:
#include <itkInterpolateImageFunction.h>
#include <itkOptimizerParameters.h>
#include <itkPoint.h>
#include <itkSingleValuedCostFunction.h>
#include <itkSize.h>
#include <itkSmartPointer.h>
#include <itkVector.h>
// GoogleTest header file:
#include <gtest/gtest.h>
#include <algorithm> // For generate_n.
#include <cassert>
#include <cfloat> // For DBL_MAX.
#include <limits>
#include <random>
namespace elastix
{
namespace GTestUtilities
{
/// Expect that all keys of both specified maps are unique.
template <typename TMap>
void
ExpectAllKeysUnique(const TMap & map1, const TMap & map2)
{
const auto endOfMap2 = map2.end();
for (const auto & keyValuePair : map1)
{
EXPECT_EQ(map2.find(keyValuePair.first), endOfMap2);
}
}
/// Makes a map by merging its two arguments together.
template <typename TMap>
TMap
MakeMergedMap(TMap map1, const TMap & map2)
{
// Note: This for-loop should be equivalent to C++17 `map1.merge(TMap{map2});`
for (const auto & keyValuePair : map2)
{
map1.insert(keyValuePair);
}
return map1;
}
/// Creates a default `ElastixTemplate<FixedImageType, MovingImageType>` object.
/// for unit testing purposes.
template <typename TElastix>
itk::SmartPointer<TElastix>
CreateDefaultElastixObject()
{
using FixedImageType = typename TElastix::FixedImageType;
using MovingImageType = typename TElastix::MovingImageType;
const auto elastixObject = TElastix::New();
elastixObject->SetConfiguration(elx::Configuration::New());
const auto fixedImageContainer = elx::ElastixBase::DataObjectContainerType::New();
fixedImageContainer->push_back(FixedImageType::New());
elastixObject->SetFixedImageContainer(fixedImageContainer);
const auto movingImageContainer = elx::ElastixBase::DataObjectContainerType::New();
movingImageContainer->push_back(MovingImageType::New());
elastixObject->SetMovingImageContainer(movingImageContainer);
return elastixObject;
}
/// Returns an `OptimizerParameters` object, filled with pseudo random floating point numbers between the specified
/// minimum and maximum value.
inline itk::OptimizerParameters<double>
GeneratePseudoRandomParameters(const unsigned numberOfParameters, const double minValue, const double maxValue = 1.0)
{
assert(minValue < maxValue);
assert((maxValue - minValue) <= DBL_MAX);
itk::OptimizerParameters<double> parameters(numberOfParameters);
std::mt19937 randomNumberEngine;
std::generate_n(parameters.begin(), numberOfParameters, [&randomNumberEngine, minValue, maxValue] {
return std::uniform_real_distribution<>{ minValue, maxValue }(randomNumberEngine);
});
return parameters;
}
/// Does set up and initialize the specified advanced metric.
template <typename TFixedImage, typename TMovingImage>
void
InitializeMetric(
itk::AdvancedImageToImageMetric<TFixedImage, TMovingImage> & metric,
const TFixedImage & fixedImage,
const TMovingImage & movingImage,
itk::ImageSamplerBase<TFixedImage> & imageSampler,
itk::AdvancedTransform<double, TFixedImage::ImageDimension, TMovingImage::ImageDimension> & advancedTransform,
itk::InterpolateImageFunction<TMovingImage> & interpolator,
const typename TFixedImage::RegionType & fixedImageRegion)
{
// In elastix, this member function is just called by elx::MetricBase::SetAdvancedMetricImageSampler, at
// https://github.com/SuperElastix/elastix/blob/5.1.0/Core/ComponentBaseClasses/elxMetricBase.hxx#L313
metric.SetImageSampler(&imageSampler);
// Similar to the six member function calls in `MultiResolutionImageRegistrationMethod2::Initialize()` "Setup the
// metric", at
// https://github.com/SuperElastix/elastix/blob/5.1.0/Common/itkMultiResolutionImageRegistrationMethod2.hxx#L118-L124
metric.SetMovingImage(&movingImage);
metric.SetFixedImage(&fixedImage);
metric.SetTransform(&advancedTransform);
metric.SetInterpolator(&interpolator);
metric.SetFixedImageRegion(fixedImageRegion);
metric.Initialize();
}
/// Represents the value and derivative retrieved from a metric (cost function).
struct ValueAndDerivative
{
double value;
itk::Array<double> derivative;
static ValueAndDerivative
FromCostFunction(const itk::SingleValuedCostFunction & costFunction,
const itk::OptimizerParameters<double> & optimizerParameters)
{
static constexpr auto quiet_NaN = std::numeric_limits<double>::quiet_NaN();
ValueAndDerivative valueAndDerivative{ quiet_NaN, itk::Array<double>(optimizerParameters.size(), quiet_NaN) };
costFunction.GetValueAndDerivative(optimizerParameters, valueAndDerivative.value, valueAndDerivative.derivative);
return valueAndDerivative;
}
};
} // namespace GTestUtilities
} // namespace elastix
#endif
|