File: itkImageRandomCoordinateSampler.hxx

package info (click to toggle)
elastix 5.2.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 42,480 kB
  • sloc: cpp: 68,403; lisp: 4,118; python: 1,013; xml: 182; sh: 177; makefile: 33
file content (278 lines) | stat: -rw-r--r-- 10,534 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
/*=========================================================================
 *
 *  Copyright UMC Utrecht and contributors
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *        http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkImageRandomCoordinateSampler_hxx
#define itkImageRandomCoordinateSampler_hxx

#include "itkImageRandomCoordinateSampler.h"
#include <itkDeref.h>
#include <vnl/vnl_math.h>
#include <cassert>

namespace itk
{

/**
 * ******************* GenerateData *******************
 */

template <class TInputImage>
void
ImageRandomCoordinateSampler<TInputImage>::GenerateData()
{
  /** Get handles to the input image, output sample container, and interpolator. */
  const InputImageType &             inputImage = Deref(this->GetInput());
  auto &                             samples = Deref(this->GetOutput()).CastToSTLContainer();
  typename InterpolatorType::Pointer interpolator = this->GetModifiableInterpolator();

  /** Set up the interpolator. */
  interpolator->SetInputImage(&inputImage); // only once?

  const auto croppedInputImageRegion = this->GetCroppedInputImageRegion();

  /** Convert inputImageRegion to bounding box in physical space. */
  const auto                          unitSize = InputImageSizeType::Filled(1);
  const InputImageIndexType           smallestIndex = croppedInputImageRegion.GetIndex();
  const InputImageIndexType           largestIndex = smallestIndex + croppedInputImageRegion.GetSize() - unitSize;
  const InputImageContinuousIndexType smallestImageContIndex(smallestIndex);
  const InputImageContinuousIndexType largestImageContIndex(largestIndex);
  InputImageContinuousIndexType       smallestContIndex;
  InputImageContinuousIndexType       largestContIndex;
  this->GenerateSampleRegion(smallestImageContIndex, largestImageContIndex, smallestContIndex, largestContIndex);

  samples.resize(this->Superclass::m_NumberOfSamples);

  /** Get a handle to the mask. If there was no mask supplied we exercise a multi-threaded version. */
  const MaskType * const mask = this->Superclass::GetMask();
  if (mask == nullptr && Superclass::m_UseMultiThread)
  {
    /** Clear the random number list. */
    m_RandomCoordinates.clear();
    m_RandomCoordinates.reserve(this->m_NumberOfSamples);

    /** Fill the list with random numbers. */
    for (unsigned long i = 0; i < this->m_NumberOfSamples; ++i)
    {
      InputImageContinuousIndexType randomCIndex;

      this->GenerateRandomCoordinate(smallestContIndex, largestContIndex, randomCIndex);
      m_RandomCoordinates.push_back(randomCIndex);
    }

    UserData userData{ m_RandomCoordinates, inputImage, *interpolator, samples };

    Deref(this->ProcessObject::GetMultiThreader()).SetSingleMethodAndExecute(&Self::ThreaderCallback, &userData);
    return;
  }

  InputImageContinuousIndexType sampleContIndex;
  /** Fill the sample container. */
  if (mask == nullptr)
  {
    /** Start looping over the sample container. */
    for (auto & sample : samples)
    {
      /** Make a reference to the current sample in the container. */
      InputImagePointType &  samplePoint = sample.m_ImageCoordinates;
      ImageSampleValueType & sampleValue = sample.m_ImageValue;

      /** Walk over the image until we find a valid point. */
      this->GenerateRandomCoordinate(smallestContIndex, largestContIndex, sampleContIndex);

      /** Convert to point */
      inputImage.TransformContinuousIndexToPhysicalPoint(sampleContIndex, samplePoint);

      /** Compute the value at the continuous index. */
      sampleValue = static_cast<ImageSampleValueType>(this->m_Interpolator->EvaluateAtContinuousIndex(sampleContIndex));

    } // end for loop
  }   // end if no mask
  else
  {
    /** Update the mask. */
    mask->UpdateSource();

    /** Set up some variable that are used to make sure we are not forever
     * walking around on this image, trying to look for valid samples. */
    unsigned long numberOfSamplesTried = 0;
    unsigned long maximumNumberOfSamplesToTry = 10 * this->GetNumberOfSamples();

    /** Start looping over the sample container */
    for (auto & sample : samples)
    {
      /** Make a reference to the current sample in the container. */
      InputImagePointType &  samplePoint = sample.m_ImageCoordinates;
      ImageSampleValueType & sampleValue = sample.m_ImageValue;

      /** Walk over the image until we find a valid point */
      do
      {
        /** Check if we are not trying eternally to find a valid point. */
        ++numberOfSamplesTried;
        if (numberOfSamplesTried > maximumNumberOfSamplesToTry)
        {
          /** Squeeze the sample container to the size that is still valid. */
          samples.resize(&sample - samples.data());
          itkExceptionMacro(
            "Could not find enough image samples within reasonable time. Probably the mask is too small");
        }

        /** Generate a point in the input image region. */
        this->GenerateRandomCoordinate(smallestContIndex, largestContIndex, sampleContIndex);
        inputImage.TransformContinuousIndexToPhysicalPoint(sampleContIndex, samplePoint);

      } while (!interpolator->IsInsideBuffer(sampleContIndex) || !mask->IsInsideInWorldSpace(samplePoint));

      /** Compute the value at the point. */
      sampleValue = static_cast<ImageSampleValueType>(this->m_Interpolator->EvaluateAtContinuousIndex(sampleContIndex));

    } // end for loop
  }   // end if mask

} // end GenerateData()


/**
 * ******************* ThreaderCallback *******************
 */

template <class TInputImage>
ITK_THREAD_RETURN_FUNCTION_CALL_CONVENTION
ImageRandomCoordinateSampler<TInputImage>::ThreaderCallback(void * const arg)
{
  assert(arg);
  const auto & info = *static_cast<const MultiThreaderBase::WorkUnitInfo *>(arg);

  assert(info.UserData);
  auto & userData = *static_cast<UserData *>(info.UserData);

  const auto & randomCoordinates = userData.m_RandomCoordinates;
  auto &       samples = userData.m_Samples;
  const auto & interpolator = userData.m_Interpolator;

  const auto totalNumberOfSamples = samples.size();
  assert(totalNumberOfSamples == randomCoordinates.size());

  const auto numberOfSamplesPerWorkUnit = totalNumberOfSamples / info.NumberOfWorkUnits;
  const auto remainderNumberOfSamples = totalNumberOfSamples % info.NumberOfWorkUnits;

  const auto offset =
    info.WorkUnitID * numberOfSamplesPerWorkUnit + std::min<size_t>(info.WorkUnitID, remainderNumberOfSamples);
  const auto beginOfRandomCoordinates = randomCoordinates.data() + offset;
  const auto beginOfSamples = samples.data() + offset;

  const auto & inputImage = userData.m_InputImage;

  const size_t n{ numberOfSamplesPerWorkUnit + (info.WorkUnitID < remainderNumberOfSamples ? 1 : 0) };

  for (size_t i = 0; i < n; ++i)
  {
    auto &                              sample = beginOfSamples[i];
    const InputImageContinuousIndexType sampleCIndex = beginOfRandomCoordinates[i];

    /** Convert to point */
    inputImage.TransformContinuousIndexToPhysicalPoint(sampleCIndex, sample.m_ImageCoordinates);

    /** Compute the value at the continuous index. */
    sample.m_ImageValue = static_cast<ImageSampleValueType>(interpolator.EvaluateAtContinuousIndex(sampleCIndex));

  } // end for loop

  return ITK_THREAD_RETURN_DEFAULT_VALUE;
}


/**
 * ******************* GenerateRandomCoordinate *******************
 */

template <class TInputImage>
void
ImageRandomCoordinateSampler<TInputImage>::GenerateRandomCoordinate(
  const InputImageContinuousIndexType & smallestContIndex,
  const InputImageContinuousIndexType & largestContIndex,
  InputImageContinuousIndexType &       randomContIndex)
{
  for (unsigned int i = 0; i < InputImageDimension; ++i)
  {
    randomContIndex[i] = static_cast<InputImagePointValueType>(
      this->m_RandomGenerator->GetUniformVariate(smallestContIndex[i], largestContIndex[i]));
  }
} // end GenerateRandomCoordinate()


/**
 * ******************* GenerateSampleRegion *******************
 */

template <class TInputImage>
void
ImageRandomCoordinateSampler<TInputImage>::GenerateSampleRegion(
  const InputImageContinuousIndexType & smallestImageContIndex,
  const InputImageContinuousIndexType & largestImageContIndex,
  InputImageContinuousIndexType &       smallestContIndex,
  InputImageContinuousIndexType &       largestContIndex)
{
  if (!this->GetUseRandomSampleRegion())
  {
    smallestContIndex = smallestImageContIndex;
    largestContIndex = largestImageContIndex;
    return;
  }

  /** Convert sampleRegionSize to continuous index space and
   * compute the maximum allowed value for the smallestContIndex,
   * such that a sample region of size SampleRegionSize still fits.
   */
  using CIndexVectorType = typename InputImageContinuousIndexType::VectorType;
  CIndexVectorType              sampleRegionSize;
  InputImageContinuousIndexType maxSmallestContIndex;
  for (unsigned int i = 0; i < InputImageDimension; ++i)
  {
    sampleRegionSize[i] = this->GetSampleRegionSize()[i] / this->GetInput()->GetSpacing()[i];
    maxSmallestContIndex[i] = largestImageContIndex[i] - sampleRegionSize[i];

    /** Make sure it is larger than the lower bound. */
    maxSmallestContIndex[i] = std::max(maxSmallestContIndex[i], smallestImageContIndex[i]);
  }

  this->GenerateRandomCoordinate(smallestImageContIndex, maxSmallestContIndex, smallestContIndex);
  largestContIndex = smallestContIndex;
  largestContIndex += sampleRegionSize;

} // end GenerateSampleRegion()


/**
 * ******************* PrintSelf *******************
 */

template <class TInputImage>
void
ImageRandomCoordinateSampler<TInputImage>::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);

  os << indent << "Interpolator: " << this->m_Interpolator.GetPointer() << std::endl;
  os << indent << "RandomGenerator: " << this->m_RandomGenerator.GetPointer() << std::endl;

} // end PrintSelf()


} // end namespace itk

#endif // end #ifndef itkImageRandomCoordinateSampler_hxx