1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
/*=========================================================================
*
* Copyright UMC Utrecht and contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkImageRandomSampler_hxx
#define itkImageRandomSampler_hxx
#include "itkImageRandomSampler.h"
#include "itkMersenneTwisterRandomVariateGenerator.h"
#include "itkImageRandomConstIteratorWithIndex.h"
#include <itkDeref.h>
#include <cassert>
namespace itk
{
/**
* ******************* GenerateData *******************
*/
template <class TInputImage>
void
ImageRandomSampler<TInputImage>::GenerateData()
{
/** Get handles to the input image, output sample container. */
const InputImageType & inputImage = Deref(this->GetInput());
auto & samples = Deref(this->GetOutput()).CastToSTLContainer();
/** Get a handle to the mask. If there was no mask supplied we exercise a multi-threaded version. */
const MaskType * const mask = this->Superclass::GetMask();
if (mask == nullptr && Superclass::m_UseMultiThread)
{
Superclass::GenerateRandomNumberList();
const auto & randomNumberList = Superclass::m_RandomNumberList;
samples.resize(randomNumberList.size());
const auto & croppedInputImageRegion = this->GetCroppedInputImageRegion();
UserData userData{
randomNumberList, inputImage, croppedInputImageRegion.GetIndex(), croppedInputImageRegion.GetSize(), samples
};
Deref(this->ProcessObject::GetMultiThreader()).SetSingleMethodAndExecute(&Self::ThreaderCallback, &userData);
return;
}
/** Reserve memory for the output. */
samples.resize(this->GetNumberOfSamples());
/** Setup a random iterator over the input image. */
using RandomIteratorType = ImageRandomConstIteratorWithIndex<InputImageType>;
RandomIteratorType randIter(&inputImage, this->GetCroppedInputImageRegion());
if (const auto optionalSeed = Superclass::GetOptionalSeed())
{
randIter.ReinitializeSeed(*optionalSeed);
}
randIter.GoToBegin();
if (mask == nullptr)
{
/** number of samples + 1, because of the initial ++randIter. */
randIter.SetNumberOfSamples(this->GetNumberOfSamples() + 1);
/** Advance one, in order to generate the same sequence as when using a mask */
++randIter;
for (auto & sample : samples)
{
/** Get the index, transform it to the physical coordinates and put it in the sample. */
InputImageIndexType index = randIter.GetIndex();
inputImage.TransformIndexToPhysicalPoint(index, sample.m_ImageCoordinates);
/** Get the value and put it in the sample. */
sample.m_ImageValue = randIter.Get();
/** Jump to a random position. */
++randIter;
} // end for loop
} // end if no mask
else
{
/** Update the mask. */
mask->UpdateSource();
/** Make sure we are not eternally trying to find samples: */
randIter.SetNumberOfSamples(10 * this->GetNumberOfSamples());
/** Loop over the sample container. */
InputImagePointType inputPoint;
bool insideMask = false;
for (auto & sample : samples)
{
/** Loop until a valid sample is found. */
do
{
/** Jump to a random position. */
++randIter;
/** Check if we are not trying eternally to find a valid point. */
if (randIter.IsAtEnd())
{
/** Squeeze the sample container to the size that is still valid. */
samples.resize(&sample - samples.data());
itkExceptionMacro(
"Could not find enough image samples within reasonable time. Probably the mask is too small");
}
/** Get the index, and transform it to the physical coordinates. */
InputImageIndexType index = randIter.GetIndex();
inputImage.TransformIndexToPhysicalPoint(index, inputPoint);
/** Check if it's inside the mask. */
insideMask = mask->IsInsideInWorldSpace(inputPoint);
} while (!insideMask);
/** Put the coordinates and the value in the sample. */
sample.m_ImageCoordinates = inputPoint;
sample.m_ImageValue = randIter.Get();
} // end for loop
/** Extra random sample to make sure the same sequence is generated
* with and without mask.
*/
++randIter;
}
} // end GenerateData()
template <class TInputImage>
ITK_THREAD_RETURN_FUNCTION_CALL_CONVENTION
ImageRandomSampler<TInputImage>::ThreaderCallback(void * const arg)
{
assert(arg);
const auto & info = *static_cast<const MultiThreaderBase::WorkUnitInfo *>(arg);
assert(info.UserData);
auto & userData = *static_cast<UserData *>(info.UserData);
const auto & randomNumberList = userData.m_RandomNumberList;
auto & samples = userData.m_Samples;
const auto totalNumberOfSamples = samples.size();
assert(totalNumberOfSamples == randomNumberList.size());
const auto numberOfSamplesPerWorkUnit = totalNumberOfSamples / info.NumberOfWorkUnits;
const auto remainderNumberOfSamples = totalNumberOfSamples % info.NumberOfWorkUnits;
const auto offset =
info.WorkUnitID * numberOfSamplesPerWorkUnit + std::min<size_t>(info.WorkUnitID, remainderNumberOfSamples);
const auto beginOfRandomNumbers = randomNumberList.data() + offset;
const auto beginOfSamples = samples.data() + offset;
const auto & inputImage = userData.m_InputImage;
const InputImageSizeType regionSize = userData.m_RegionSize;
const InputImageIndexType regionIndex = userData.m_RegionIndex;
const size_t n{ numberOfSamplesPerWorkUnit + (info.WorkUnitID < remainderNumberOfSamples ? 1 : 0) };
for (size_t i = 0; i < n; ++i)
{
auto randomPosition = static_cast<size_t>(beginOfRandomNumbers[i]);
auto & sample = beginOfSamples[i];
/** Translate randomPosition to an index, copied from ImageRandomConstIteratorWithIndex. */
InputImageIndexType positionIndex;
for (unsigned int dim = 0; dim < InputImageDimension; ++dim)
{
const auto sizeInThisDimension = regionSize[dim];
const auto residual = randomPosition % sizeInThisDimension;
positionIndex[dim] = static_cast<IndexValueType>(residual) + regionIndex[dim];
randomPosition -= residual;
randomPosition /= sizeInThisDimension;
}
/** Transform index to the physical coordinates and put it in the sample. */
inputImage.TransformIndexToPhysicalPoint(positionIndex, sample.m_ImageCoordinates);
/** Get the value and put it in the sample. */
sample.m_ImageValue = static_cast<ImageSampleValueType>(inputImage.GetPixel(positionIndex));
}
return ITK_THREAD_RETURN_DEFAULT_VALUE;
}
} // end namespace itk
#endif // end #ifndef itkImageRandomSampler_hxx
|