1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
/*=========================================================================
*
* Copyright UMC Utrecht and contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkMultiInputImageRandomCoordinateSampler_hxx
#define itkMultiInputImageRandomCoordinateSampler_hxx
#include "itkMultiInputImageRandomCoordinateSampler.h"
#include <vnl/vnl_inverse.h>
#include "itkConfigure.h"
#include <itkDeref.h>
namespace itk
{
/**
* ******************* GenerateData *******************
*/
template <class TInputImage>
void
MultiInputImageRandomCoordinateSampler<TInputImage>::GenerateData()
{
/** Check. */
if (!this->CheckInputImageRegions())
{
itkExceptionMacro("ERROR: at least one of the InputImageRegions is not a subregion of the LargestPossibleRegion");
}
/** Get handles to the input image, output sample container, and mask. */
const InputImageType & inputImage = Deref(this->GetInput());
auto & samples = Deref(this->GetOutput()).CastToSTLContainer();
const MaskType * const mask = this->Superclass::GetMask();
typename InterpolatorType::Pointer interpolator = this->GetModifiableInterpolator();
/** Set up the interpolator. */
interpolator->SetInputImage(&inputImage);
/** Get the intersection of all sample regions. */
InputImageContinuousIndexType smallestContIndex;
InputImageContinuousIndexType largestContIndex;
this->GenerateSampleRegion(smallestContIndex, largestContIndex);
/** Reserve memory for the output. */
samples.resize(this->GetNumberOfSamples());
InputImageContinuousIndexType sampleContIndex;
/** Fill the sample container. */
if (mask == nullptr)
{
/** Start looping over the sample container. */
for (auto & sample : samples)
{
/** Make a reference to the current sample in the container. */
InputImagePointType & samplePoint = sample.m_ImageCoordinates;
ImageSampleValueType & sampleValue = sample.m_ImageValue;
/** Generate a point in the input image region. */
this->GenerateRandomCoordinate(smallestContIndex, largestContIndex, sampleContIndex);
/** Convert to point */
inputImage.TransformContinuousIndexToPhysicalPoint(sampleContIndex, samplePoint);
/** Compute the value at the contindex. */
sampleValue = static_cast<ImageSampleValueType>(this->m_Interpolator->EvaluateAtContinuousIndex(sampleContIndex));
} // end for loop
} // end if no mask
else
{
/** Update all masks. */
this->UpdateAllMasks();
/** Set up some variable that are used to make sure we are not forever
* walking around on this image, trying to look for valid samples.
*/
unsigned long numberOfSamplesTried = 0;
unsigned long maximumNumberOfSamplesToTry = 10 * this->GetNumberOfSamples();
/** Start looping over the sample container. */
for (auto & sample : samples)
{
/** Make a reference to the current sample in the container. */
InputImagePointType & samplePoint = sample.m_ImageCoordinates;
ImageSampleValueType & sampleValue = sample.m_ImageValue;
/** Walk over the image until we find a valid point. */
do
{
/** Check if we are not trying eternally to find a valid point. */
++numberOfSamplesTried;
if (numberOfSamplesTried > maximumNumberOfSamplesToTry)
{
/** Squeeze the sample container to the size that is still valid. */
samples.resize(&sample - samples.data());
itkExceptionMacro(
"Could not find enough image samples within reasonable time. Probably the mask is too small");
}
/** Generate a point in the input image region. */
this->GenerateRandomCoordinate(smallestContIndex, largestContIndex, sampleContIndex);
inputImage.TransformContinuousIndexToPhysicalPoint(sampleContIndex, samplePoint);
} while (!this->IsInsideAllMasks(samplePoint));
/** Compute the value at the contindex. */
sampleValue = static_cast<ImageSampleValueType>(this->m_Interpolator->EvaluateAtContinuousIndex(sampleContIndex));
} // end for loop
} // end if mask
} // end GenerateData()
/**
* ******************* GenerateSampleRegion *******************
*/
template <class TInputImage>
void
MultiInputImageRandomCoordinateSampler<TInputImage>::GenerateSampleRegion(
InputImageContinuousIndexType & smallestContIndex,
InputImageContinuousIndexType & largestContIndex)
{
/** Get handles to the number of inputs and regions. */
const unsigned int numberOfInputs = this->GetNumberOfInputs();
const unsigned int numberOfRegions = this->GetNumberOfInputImageRegions();
/** Check. */
if (numberOfRegions != numberOfInputs && numberOfRegions != 1)
{
itkExceptionMacro("ERROR: The number of regions should be 1 or the number of inputs.");
}
using DirectionType = typename InputImageType::DirectionType;
DirectionType dir0 = this->GetInput(0)->GetDirection();
typename DirectionType::InternalMatrixType dir0invtemp = vnl_inverse(dir0.GetVnlMatrix());
DirectionType dir0inv(dir0invtemp);
for (unsigned int i = 1; i < numberOfInputs; ++i)
{
DirectionType diri = this->GetInput(i)->GetDirection();
if (diri != dir0)
{
itkExceptionMacro("ERROR: All input images should have the same direction cosines matrix.");
}
}
/** Initialize the smallest and largest point. */
InputImagePointType smallestPoint;
InputImagePointType largestPoint;
smallestPoint.Fill(NumericTraits<InputImagePointValueType>::NonpositiveMin());
largestPoint.Fill(NumericTraits<InputImagePointValueType>::max());
/** Determine the intersection of all regions, assuming identical direction cosines,
* but possibly different origin/spacing.
* \todo: test this really carefully!
*/
const auto unitSize = InputImageSizeType::Filled(1);
for (unsigned int i = 0; i < numberOfRegions; ++i)
{
/** Get the outer indices. */
const InputImageIndexType smallestIndex = this->GetInputImageRegion(i).GetIndex();
const InputImageIndexType largestIndex = smallestIndex + this->GetInputImageRegion(i).GetSize() - unitSize;
/** Convert to points */
InputImagePointType smallestImagePoint;
InputImagePointType largestImagePoint;
this->GetInput(i)->TransformIndexToPhysicalPoint(smallestIndex, smallestImagePoint);
this->GetInput(i)->TransformIndexToPhysicalPoint(largestIndex, largestImagePoint);
/** apply inverse direction, so that next max-operation makes sense. */
smallestImagePoint = dir0inv * smallestImagePoint;
largestImagePoint = dir0inv * largestImagePoint;
/** Determine intersection. */
for (unsigned int j = 0; j < InputImageDimension; ++j)
{
/** Get the largest smallest point. */
smallestPoint[j] = std::max(smallestPoint[j], smallestImagePoint[j]);
/** Get the smallest largest point. */
largestPoint[j] = std::min(largestPoint[j], largestImagePoint[j]);
}
}
/** Convert to continuous index in input image 0. */
smallestPoint = dir0 * smallestPoint;
largestPoint = dir0 * largestPoint;
smallestContIndex = this->GetInput(0)->template TransformPhysicalPointToContinuousIndex<CoordRepType>(smallestPoint);
largestContIndex = this->GetInput(0)->template TransformPhysicalPointToContinuousIndex<CoordRepType>(largestPoint);
/** Support for localised mutual information. */
if (this->GetUseRandomSampleRegion())
{
/** Convert sampleRegionSize to continuous index space */
using CIndexVectorType = typename InputImageContinuousIndexType::VectorType;
CIndexVectorType sampleRegionSize;
for (unsigned int i = 0; i < InputImageDimension; ++i)
{
sampleRegionSize[i] = this->GetSampleRegionSize()[i] / this->GetInput()->GetSpacing()[i];
}
InputImageContinuousIndexType maxSmallestContIndex = largestContIndex;
maxSmallestContIndex -= sampleRegionSize;
this->GenerateRandomCoordinate(smallestContIndex, maxSmallestContIndex, smallestContIndex);
largestContIndex = smallestContIndex;
largestContIndex += sampleRegionSize;
}
} // end GenerateSampleRegion()
/**
* ******************* GenerateRandomCoordinate *******************
*/
template <class TInputImage>
void
MultiInputImageRandomCoordinateSampler<TInputImage>::GenerateRandomCoordinate(
const InputImageContinuousIndexType & smallestContIndex,
const InputImageContinuousIndexType & largestContIndex,
InputImageContinuousIndexType & randomContIndex)
{
for (unsigned int i = 0; i < InputImageDimension; ++i)
{
randomContIndex[i] = static_cast<InputImagePointValueType>(
this->m_RandomGenerator->GetUniformVariate(smallestContIndex[i], largestContIndex[i]));
}
} // end GenerateRandomCoordinate()
/**
* ******************* PrintSelf *******************
*/
template <class TInputImage>
void
MultiInputImageRandomCoordinateSampler<TInputImage>::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "Interpolator: " << this->m_Interpolator.GetPointer() << std::endl;
os << indent << "RandomGenerator: " << this->m_RandomGenerator.GetPointer() << std::endl;
} // end PrintSelf
} // end namespace itk
#endif // end #ifndef itkMultiInputImageRandomCoordinateSampler_hxx
|