File: GPUBSplineTransform.cl

package info (click to toggle)
elastix 5.2.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 42,480 kB
  • sloc: cpp: 68,403; lisp: 4,118; python: 1,013; xml: 182; sh: 177; makefile: 33
file content (438 lines) | stat: -rw-r--r-- 15,200 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
/*=========================================================================
 *
 *  Copyright UMC Utrecht and contributors
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *        http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
//
// \author Denis P. Shamonin and Marius Staring. Division of Image Processing,
// Department of Radiology, Leiden, The Netherlands
//
// \note This work was funded by the Netherlands Organisation for
// Scientific Research (NWO NRG-2010.02 and NWO 639.021.124).
//
// OpenCL implementation of itk::BSplineTransform

//------------------------------------------------------------------------------
void set_weights( const float cindex,
  const uint spline_order, const long startindex,
  const uint offset, float * weights )
{
  // The code below was taken from:
  //   elastix/src/Common/Transforms/itkBSplineKernelFunction2.h
  // Compared to the ITK version this code assigns to the entire
  // weights vector at once, instead of in a loop, thereby avoiding
  // the excessive use of if statements.
  const float u = cindex - (float)( startindex );

  if( spline_order == 3 )
  {
    const float uu  = pown(u, 2);
    const float uuu = uu * u;

    weights[offset    ] = ( 8.0f - 12.0f * u +  6.0f * uu - uuu ) / 6.0f;
    weights[offset + 1] = ( mad(21.0f, u, -5.0f) - 15.0f * uu + 3.0f * uuu ) / 6.0f;
    weights[offset + 2] = ( 4.0f - 12.0f * u + 12.0f * uu - 3.0f * uuu ) / 6.0f;
    weights[offset + 3] = ( mad(3.0f, u, -1.0f) -  3.0f * uu + uuu ) / 6.0f;

    return;
  }
  else if( spline_order == 0 )
  {
    if( u < 0.5f ) { weights[offset + 0] = 1.0f; }
    else { weights[offset] = 0.5f; }

    return;
  }
  else if( spline_order == 1 )
  {
    weights[offset    ] = 1.0f - u;
    weights[offset + 1] = u - 1.0f;

    return;
  }
  else if( spline_order == 2 )
  {
    const float uu = u * u;

    weights[offset    ] = ( 9.0f  - 12.0f * u + 4.0f * uu ) / 8.0f;
    weights[offset + 1] = mad(2.0f, u, -0.25f) - uu;
    weights[offset + 2] = ( 1.0f  -  4.0f * u + 4.0f * uu ) / 8.0f;

    return;
  }
}

//------------------------------------------------------------------------------
#ifdef DIM_1
bool inside_valid_region_1d( float * cindex, const uint spline_order,
  uint coefficients_image_size_x )
{
  const float min_limit  = 0.5f * (float)( spline_order - 1 );
  const float max_helper = 0.5f * (float)( spline_order - 1 ) + 1.0f;
  const float eps = 1.0e-6f;

  // x
  float max_limit = coefficients_image_size_x - max_helper;
  float cind = (*cindex); float diff = cind - max_limit;
  if( diff > 0.0f && diff < eps ){ (*cindex) -= eps; }
  else if( cind >= max_limit ) return false;
  else if( cind <  min_limit ) return false;

  return true;
}
#endif // DIM_1

//------------------------------------------------------------------------------
#ifdef DIM_2
bool inside_valid_region_2d( float2 * cindex, const uint spline_order,
  uint2 coefficients_image_size )
{
  const float min_limit  = 0.5f * (float)( spline_order - 1 );
  const float max_helper = 0.5f * (float)( spline_order - 1 ) + 1.0f;
  const float eps = 1.0e-6f;

  // x
  float max_limit = coefficients_image_size.x - max_helper;
  float cind = (*cindex).x; float diff = cind - max_limit;
  if( diff > 0.0f && diff < eps ){ (*cindex).x -= eps; }
  else if( cind >= max_limit ) return false;
  else if( cind <  min_limit ) return false;

  // y
  max_limit = coefficients_image_size.y - max_helper;
  cind = (*cindex).y; diff = cind - max_limit;
  if( diff > 0.0f && diff < eps ){ (*cindex).y -= eps; }
  else if( cind >= max_limit ) return false;
  else if( cind <  min_limit ) return false;

  return true;
}
#endif // DIM_2

//------------------------------------------------------------------------------
#ifdef DIM_3
bool inside_valid_region_3d( float3 * cindex, const uint spline_order,
  uint3 coefficients_image_size )
{
  const float min_limit  = 0.5f * (float)( spline_order - 1 );
  const float max_helper = 0.5f * (float)( spline_order - 1 ) + 1.0f;
  const float eps = 1.0e-6f;

  // x
  float max_limit = coefficients_image_size.x - max_helper;
  float cind = (*cindex).x; float diff = cind - max_limit;
  if( diff > 0.0f && diff < eps ){ (*cindex).x -= eps; }
  else if( cind >= max_limit ) return false;
  else if( cind <  min_limit ) return false;

  // y
  max_limit = coefficients_image_size.y - max_helper;
  cind = (*cindex).y; diff = cind - max_limit;
  if( diff > 0.0f && diff < eps ){ (*cindex).y -= eps; }
  else if( cind >= max_limit ) return false;
  else if( cind <  min_limit ) return false;

  // z
  max_limit = coefficients_image_size.z - max_helper;
  cind = (*cindex).z; diff = cind - max_limit;
  if( diff > 0.0f && diff < eps ){ (*cindex).z -= eps; }
  else if( cind >= max_limit ) return false;
  else if( cind <  min_limit ) return false;

  return true;
}
#endif // DIM_3

//------------------------------------------------------------------------------
#ifdef DIM_1
long evaluate_1d( const float index,
  const uint spline_order, const uint support_size,
  const uint number_of_weights, float * weights )
{
  // find the starting index of the support region
  const long startindex = (long)( floor( index - (float)( spline_order - 1 ) / 2.0f ) );

  // number of elements in offset_to_index_table in 1d computed using formula spline_order + 1.
  // we allocate the maximum to avoid using if's for all spline orders.
  ulong offset_to_index_table[4];
  for( uint i = 0; i < support_size; ++i )
  {
    offset_to_index_table[i] = i;
  }

  // number of weights1D in 1d computed using formula spline_order + 1.
  // we allocate the maximum to avoid using if's for all spline orders.
  float weights1D[4];
  set_weights( index, spline_order, startindex, 0, weights1D );

  // compute all possible products of the 1D weights
  for( uint k = 0; k < number_of_weights; ++k )
  {
    weights[k] = weights1D[offset_to_index_table[k]];
  }

  // return start index
  return startindex;
}
#endif // DIM_1

//------------------------------------------------------------------------------
#ifdef DIM_2
long2 evaluate_2d( const float2 cindex,
  const uint spline_order, const uint support_size,
  const uint number_of_weights, float * weights )
{
  // find the starting index of the support region
  long2 startIndex;
  const float tmp = (float)( spline_order - 1 ) / 2.0f;
  startIndex.x = (long)( floor( cindex.x - tmp ) );
  startIndex.y = (long)( floor( cindex.y - tmp ) );

  // number of weights1D in 2d computed using formula 2 * (spline_order + 1).
  // we allocate the maximum to avoid using if's for all spline orders.
  float weights1D[8];
  set_weights( cindex.x, spline_order, startIndex.x, 0,            weights1D );
  set_weights( cindex.y, spline_order, startIndex.y, support_size, weights1D );

  // compute all possible products of the 1D weights
  uint x, y;
  for( uint k = 0; k < number_of_weights; ++k )
  {
    x = k % support_size;
    y = ( k / support_size ) % support_size;
    weights[ k ] = weights1D[ x ] * weights1D[ 1 * support_size + y ];
  }

  // return start index
  return startIndex;
}
#endif // DIM_2

//------------------------------------------------------------------------------
#ifdef DIM_3
long3 evaluate_3d( const float3 cindex,
  const uint spline_order, const uint support_size,
  const uint number_of_weights, float * weights )
{
  // find the starting index of the support region
  long3 startIndex;
  const float tmp = (float)( spline_order - 1 ) / 2.0f;
  startIndex.x = (long)( floor( cindex.x - tmp ) );
  startIndex.y = (long)( floor( cindex.y - tmp ) );
  startIndex.z = (long)( floor( cindex.z - tmp ) );

  // number of weights1D in 3d computed using formula 3 * (spline_order + 1).
  // we allocate the maximum to avoid using if's for all spline orders.
  float weights1D[12];
  set_weights( cindex.x, spline_order, startIndex.x, 0,                weights1D );
  set_weights( cindex.y, spline_order, startIndex.y, support_size,     weights1D );
  set_weights( cindex.z, spline_order, startIndex.z, support_size * 2, weights1D );

  // compute all possible products of the 1D weights
  uint x, y, z;
  for( uint k = 0; k < number_of_weights; ++k )
  {
    x = k % support_size;
    y = ( k / support_size ) % support_size;
    z = ( k / support_size / support_size ) % support_size;
    weights[ k ] = weights1D[ x ] * weights1D[ 1 * support_size + y ] * weights1D[ 2 * support_size + z ];
  }

  // return start index
  return startIndex;
}
#endif // DIM_3

//------------------------------------------------------------------------------
#ifdef DIM_1
float bspline_transform_point_1d( const float point,
  const uint spline_order,
  __constant GPUImageBase1D *coefficients_image,
  __global const float *coefficients )
{
  float tpoint = 0;
  float cindex;

  // \todo:
  // only needs PhysicalPointToIndex, Origin, Size
  // not Direction, IndexToPhysicalPoint, Spacing
  // Memory passing reduces to 8/18 x 100%.
  transform_physical_point_to_continuous_index_1d( point, &cindex, coefficients_image );

  const bool inside = inside_valid_region_1d( &cindex, spline_order, coefficients_image->size );
  if ( !inside )
  {
    tpoint = point;
    return tpoint;
  }

  // support region and coefficient image size, equals B-spline order + 1
  const uint support_size = spline_order + 1;

  // number of weights in 1d computed using formula pow(spline_order + 1, 1).
  // we allocate the maximum to avoid using if's for all spline orders.
  float weights[4];
  const uint number_of_weights = support_size;

  const long support_index = evaluate_1d( cindex, spline_order, support_size,
    number_of_weights, weights );

  const uint support_region = support_index + support_size;

  // multiply weight with coefficient
  uint counter = 0;
  float c, w;
  for ( uint i = (uint)( support_index ); i < support_region; ++i )
  {
    c = coefficients[i];
    w = weights[counter];
    tpoint = mad( c, w, tpoint );
    ++counter;
  }

  tpoint += point;
  return tpoint;
}
#endif // DIM_1

//------------------------------------------------------------------------------
#ifdef DIM_2
float2 bspline_transform_point_2d( const float2 point,
  const uint spline_order,
  __constant GPUImageBase2D *coefficients_image,
  __global const float *coefficients0,
  __global const float *coefficients1 )
{
  float2 tpoint = (float2)( 0, 0 );
  float2 cindex;

  // \todo:
  // only needs PhysicalPointToIndex, Origin, Size
  // not Direction, IndexToPhysicalPoint, Spacing
  // Memory passing reduces to 8/18 x 100%.
  transform_physical_point_to_continuous_index_2d( point, &cindex, coefficients_image );

  const bool inside = inside_valid_region_2d( &cindex, spline_order, coefficients_image->size );
  if( !inside ) return point;

  // support region and coefficient image size, equals B-spline order + 1
  const uint support_size = spline_order + 1;

  // number of weights in 2d computed using formula pow(spline_order + 1, 2).
  // we allocate the maximum to avoid using if's for all spline orders.
  float weights[16];
  const uint number_of_weights = support_size * support_size;

  const long2 start_index = evaluate_2d( cindex, spline_order, support_size,
    number_of_weights, weights );

  // copy kernel parameter from const memory to local memory for speedup
  const uint coefficients_image_size_x = coefficients_image->size.x;

  // multiply weight with coefficient
  float cx, cy, w;
  uint x, y, gidx;
  for( uint k = 0; k < number_of_weights; ++k )
  {
    // Get the index of the point corresponding to this weight
    // Extra computation to avoid triple loop
    x = start_index.x + ( k % support_size );
    y = start_index.y + ( k / support_size ) % support_size;

    // Get the global index of the coefficient image
    gidx = mad24( coefficients_image_size_x, y, x );

    // Get the coefficients and weight from memory
    cx = coefficients0[ gidx ];
    cy = coefficients1[ gidx ];
    w = weights[ k ];

    // Perform the multiplication and update the output point
    tpoint.x = mad( cx, w, tpoint.x );
    tpoint.y = mad( cy, w, tpoint.y );
  }

  // transformation = deformation + input point
  tpoint += point;
  return tpoint;
}
#endif // DIM_2

//------------------------------------------------------------------------------
#ifdef DIM_3
float3 bspline_transform_point_3d( const float3 point,
  const uint spline_order,
  __constant GPUImageBase3D *coefficients_image, // only partially needed
  __global const float *coefficients0,
  __global const float *coefficients1,
  __global const float *coefficients2 )
{
  float3 tpoint = (float3)( 0, 0, 0 );

  // convert point to continuous index
  float3 cindex = transform_physical_point_to_continuous_index_3d( point,
    coefficients_image->physical_point_to_index, coefficients_image->origin );

  // check if inside
  const bool inside = inside_valid_region_3d( &cindex, spline_order, coefficients_image->size );
  if( !inside ) return point;

  // support region and coefficient image size, equals B-spline order + 1
  const uint support_size = spline_order + 1;

  // number of weights in 3d computed using formula pow(spline_order + 1, 3).
  // we allocate the maximum to avoid using if's for all spline orders.
  float weights[64];
  const uint number_of_weights = support_size * support_size * support_size;

  const long3 start_index = evaluate_3d( cindex, spline_order, support_size,
    number_of_weights, weights );

  // copy kernel parameter from const memory to local memory for speedup
  const uint coefficients_image_size_x = coefficients_image->size.x;
  const uint coefficients_image_size_y = coefficients_image->size.y;

  // multiply weight with coefficient
  float cx, cy, cz, w;
  uint x, y, z, gidx;
  for( uint k = 0; k < number_of_weights; ++k )
  {
    // Get the index of the point corresponding to this weight
    // Extra computation to avoid triple loop
    x = start_index.x + ( k % support_size );
    y = start_index.y + ( k / support_size ) % support_size;
    z = start_index.z + ( k / support_size / support_size ) % support_size;

    // Get the global index of the coefficient image
    gidx = mad24( coefficients_image_size_x,
      mad24( z, coefficients_image_size_y, y ), x );

    // Get the coefficients and weight from memory
    cx = coefficients0[ gidx ];
    cy = coefficients1[ gidx ];
    cz = coefficients2[ gidx ];
    w = weights[ k ];

    // Perform the multiplication and update the output point
    tpoint.x = mad( cx, w, tpoint.x );
    tpoint.y = mad( cy, w, tpoint.y );
    tpoint.z = mad( cz, w, tpoint.z );
  }

  // transformation = deformation + input point
  tpoint += point;
  return tpoint;
}
#endif // DIM_3