1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
|
/*=========================================================================
*
* Copyright UMC Utrecht and contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
//
// \author Denis P. Shamonin and Marius Staring. Division of Image Processing,
// Department of Radiology, Leiden, The Netherlands
//
// \note This work was funded by the Netherlands Organisation for
// Scientific Research (NWO NRG-2010.02 and NWO 639.021.124).
//
// OpenCL implementation of itk::ImageBase
//------------------------------------------------------------------------------
// Definition of GPUImageBase 1D/2D/3D
typedef struct {
float direction;
float index_to_physical_point;
float physical_point_to_index;
float spacing;
float origin;
uint size;
} GPUImageBase1D;
typedef struct {
float4 direction;
float4 index_to_physical_point;
float4 physical_point_to_index;
float2 spacing;
float2 origin;
uint2 size;
} GPUImageBase2D;
typedef struct {
float16 direction; // OpenCL does not have float9
float16 index_to_physical_point; // OpenCL does not have float9
float16 physical_point_to_index; // OpenCL does not have float9
float3 spacing;
float3 origin;
uint3 size;
} GPUImageBase3D;
//------------------------------------------------------------------------------
// OpenCL 1D implementation of
// itkImageBase::ComputeIndexToPhysicalPointMatrices()
#ifdef DIM_1
void compute_index_to_physical_point_matrices_1d( GPUImageBase1D *image )
{
image->index_to_physical_point = image->direction * image->spacing;
image->physical_point_to_index = 1.0f / image->index_to_physical_point;
}
#endif // DIM_1
//------------------------------------------------------------------------------
// OpenCL 2D implementation of
// itkImageBase::ComputeIndexToPhysicalPointMatrices()
#ifdef DIM_2
void compute_index_to_physical_point_matrices_2d( GPUImageBase2D *image )
{
// not implemented
}
#endif // DIM_2
//------------------------------------------------------------------------------
// OpenCL 3D implementation of
// itkImageBase::ComputeIndexToPhysicalPointMatrices()
#ifdef DIM_3
void compute_index_to_physical_point_matrices_3d( GPUImageBase3D *image )
{
// not implemented
}
#endif // DIM_3
//------------------------------------------------------------------------------
// OpenCL 1D implementation of
// itkImageBase::SetSpacing(const SpacingType &spacing)
#ifdef DIM_1
void set_spacing_1d( const float spacing, GPUImageBase1D *image )
{
if ( image->spacing != spacing )
{
image->spacing = spacing;
compute_index_to_physical_point_matrices_1d( image );
}
}
#endif // DIM_1
//------------------------------------------------------------------------------
// OpenCL 2D implementation of
// itkImageBase::SetSpacing(const SpacingType &spacing)
#ifdef DIM_2
void set_spacing_2d( const float2 spacing, GPUImageBase2D *image )
{
const int2 is_not_equal = isnotequal( spacing, image->spacing );
if ( any( is_not_equal ) )
{
image->spacing = spacing;
compute_index_to_physical_point_matrices_2d( image );
}
}
#endif // DIM_2
//------------------------------------------------------------------------------
// OpenCL 3D implementation of
// itkImageBase::SetSpacing(const SpacingType &spacing)
#ifdef DIM_3
void set_spacing_3d( const float3 spacing, GPUImageBase3D *image )
{
const int3 isNotEqual = isnotequal( spacing, image->spacing );
if ( any( isNotEqual ) )
{
image->spacing = spacing;
compute_index_to_physical_point_matrices_3d( image );
}
}
#endif // DIM_3
//------------------------------------------------------------------------------
// OpenCL 1D implementation of
// itkImageBase::SetDirection(const DirectionType direction)
#ifdef DIM_1
void set_direction_1d( const float direction, GPUImageBase1D *image )
{
if ( image->direction != direction )
{
image->direction = direction;
compute_index_to_physical_point_matrices_1d( image );
}
}
#endif // DIM_1
//------------------------------------------------------------------------------
// OpenCL 2D implementation of
// itkImageBase::SetDirection(const DirectionType direction)
#ifdef DIM_2
void set_direction_2d( const float3 direction, GPUImageBase2D *image )
{
const int3 is_not_equal = isnotequal( direction, image->direction.xyz );
if ( any( is_not_equal ) )
{
image->direction.xyz = direction;
compute_index_to_physical_point_matrices_2d( image );
}
}
#endif // DIM_2
//------------------------------------------------------------------------------
// OpenCL 3D implementation of
// itkImageBase::SetDirection(const DirectionType direction)
#ifdef DIM_3
void set_direction_3d( const float16 direction, GPUImageBase3D *image )
{
const int16 is_not_equal = isnotequal( direction, image->direction );
if ( any( is_not_equal ) )
{
image->direction = direction;
compute_index_to_physical_point_matrices_3d( image );
}
}
#endif // DIM_3
//------------------------------------------------------------------------------
// OpenCL 1D implementation of
// itkImageRegion::IsInside(const ContinuousIndex< TCoordRepType,
// VImageDimension > &index)
#ifdef DIM_1
bool is_continuous_index_inside_1d( const float index, const uint size )
{
int rounded;
rounded = round( index );
if ( rounded < 0 ) { return false; }
float bound;
bound = (float)( size ) - 0.5f;
if ( index > bound ) { return false; }
return true;
}
#endif // DIM_1
//------------------------------------------------------------------------------
// OpenCL 2D implementation of
// itkImageRegion::IsInside(const ContinuousIndex< TCoordRepType,
// VImageDimension > &index)
#ifdef DIM_2
bool is_continuous_index_inside_2d( const float2 index, const uint2 size )
{
int2 rounded;
rounded.x = round( index.x );
rounded.y = round( index.y );
if ( rounded.x < 0 || rounded.y < 0 ) { return false; }
float2 bound;
bound.x = (float)( size.x ) - 0.5f;
bound.y = (float)( size.y ) - 0.5f;
if ( index.x > bound.x || index.y > bound.y ) { return false; }
return true;
}
#endif // DIM_2
//------------------------------------------------------------------------------
// OpenCL 3D implementation of
// itkImageRegion::IsInside(const ContinuousIndex< TCoordRepType,
// VImageDimension > &index)
#ifdef DIM_3
bool is_continuous_index_inside_3d( const float3 index, const uint3 size )
{
int3 rounded;
rounded.x = round( index.x );
rounded.y = round( index.y );
rounded.z = round( index.z );
if ( rounded.x < 0 ) { return false; }
if ( rounded.y < 0 ) { return false; }
if ( rounded.z < 0 ) { return false; }
float3 bound;
bound.x = (float)( size.x ) - 0.5f;
bound.y = (float)( size.y ) - 0.5f;
bound.z = (float)( size.z ) - 0.5f;
if ( index.x > bound.x ) { return false; }
if ( index.y > bound.y ) { return false; }
if ( index.z > bound.z ) { return false; }
return true;
}
#endif // DIM_3
//------------------------------------------------------------------------------
// OpenCL 1D implementation of
// itkImageBase::TransformIndexToPhysicalPoint()
#ifdef DIM_1
float transform_index_to_physical_point_1d(
const uint index,
__constant const GPUImageBase1D *image )
{
float point = image->origin;
point += image->index_to_physical_point * index;
return point;
}
#endif // DIM_1
//------------------------------------------------------------------------------
// OpenCL 1D implementation of
// itkImageBase::TransformIndexToPhysicalPoint()
#ifdef DIM_1
float transform_index_to_physical_point_1d_(
const uint index,
const float index_to_physical_point,
const float origin )
{
float point = origin;
point += index_to_physical_point * index;
return point;
}
#endif // DIM_1
//------------------------------------------------------------------------------
// OpenCL 2D implementation of
// itkImageBase::TransformIndexToPhysicalPoint()
#ifdef DIM_2
float2 transform_index_to_physical_point_2d(
const uint2 index,
__constant const GPUImageBase2D *image )
{
float2 i2pp_x = image->index_to_physical_point.s01;
float2 i2pp_y = image->index_to_physical_point.s23;
float2 point = image->origin;
point.x += dot( i2pp_x, convert_float2( index ) );
point.y += dot( i2pp_y, convert_float2( index ) );
return point;
}
#endif // DIM_2
//------------------------------------------------------------------------------
// OpenCL 2D implementation of
// itkImageBase::TransformIndexToPhysicalPoint()
#ifdef DIM_2
float2 transform_index_to_physical_point_2d_(
const uint2 index,
const float4 index_to_physical_point,
const float2 origin )
{
float2 index_as_float = convert_float2( index );
float2 i2pp_x = index_to_physical_point.s01;
float2 i2pp_y = index_to_physical_point.s23;
float2 point = origin;
point.x += dot( i2pp_x, index_as_float );
point.y += dot( i2pp_y, index_as_float );
return point;
}
#endif // DIM_2
//------------------------------------------------------------------------------
// OpenCL 3D implementation of
// itkImageBase::TransformIndexToPhysicalPoint()
#ifdef DIM_3
float3 transform_index_to_physical_point_3d(
const uint3 index,
__constant GPUImageBase3D *image )
{
float3 index_as_float = convert_float3( index );
float3 i2pp_x = image->index_to_physical_point.s012;
float3 i2pp_y = image->index_to_physical_point.s345;
float3 i2pp_z = image->index_to_physical_point.s678;
float3 point = image->origin;
point.x += dot( i2pp_x, index_as_float );
point.y += dot( i2pp_y, index_as_float );
point.z += dot( i2pp_z, index_as_float );
return point;
}
#endif // DIM_3
//------------------------------------------------------------------------------
// OpenCL 3D implementation of
// itkImageBase::TransformIndexToPhysicalPoint()
#ifdef DIM_3
float3 transform_index_to_physical_point_3d_(
const uint3 index,
const float16 index_to_physical_point, // OpenCL does not have float9
const float3 origin )
{
float3 index_as_float = convert_float3( index );
float3 i2pp_x = index_to_physical_point.s012;
float3 i2pp_y = index_to_physical_point.s345;
float3 i2pp_z = index_to_physical_point.s678;
float3 point = origin;
point.x += dot( i2pp_x, index_as_float );
point.y += dot( i2pp_y, index_as_float );
point.z += dot( i2pp_z, index_as_float );
return point;
}
#endif // DIM_3
//------------------------------------------------------------------------------
// OpenCL 1D implementation of
// itkImageBase::TransformPhysicalPointToContinuousIndex()
#ifdef DIM_1
bool transform_physical_point_to_continuous_index_1d(
const float point, float *index,
__constant const GPUImageBase1D *image )
{
float cvector = point - image->origin;
float cvector1;
cvector1 = image->physical_point_to_index * cvector;
*index = cvector1;
return is_continuous_index_inside_1d( cvector1, image->size );
}
#endif // DIM_1
//------------------------------------------------------------------------------
// OpenCL 2D implementation of
// itkImageBase::TransformPhysicalPointToContinuousIndex()
#ifdef DIM_2
bool transform_physical_point_to_continuous_index_2d(
const float2 point, float2 *index,
__constant const GPUImageBase2D *image )
{
float2 pp2i_x = image->physical_point_to_index.s01;
float2 pp2i_y = image->physical_point_to_index.s23;
float2 cvector = point - image->origin;
float2 cvector1;
cvector1.x = dot( pp2i_x, cvector );
cvector1.y = dot( pp2i_y, cvector );
*index = cvector1;
return is_continuous_index_inside_2d( cvector1, image->size );
}
#endif // DIM_2
//------------------------------------------------------------------------------
// OpenCL 3D implementation of
// itkImageBase::TransformPhysicalPointToContinuousIndex()
#ifdef DIM_3
float3 transform_physical_point_to_continuous_index_3d(
const float3 point,
float16 physical_point_to_index, // OpenCL does not have float9
float3 origin )
{
// Extract the three columns
float3 pp2i_x = physical_point_to_index.s012;
float3 pp2i_y = physical_point_to_index.s345;
float3 pp2i_z = physical_point_to_index.s678;
// Transform to continuous index
float3 cvector = point - origin;
float3 cindex;
cindex.x = dot( pp2i_x, cvector );
cindex.y = dot( pp2i_y, cvector );
cindex.z = dot( pp2i_z, cvector );
// The corresponding ITK function returns is_inside, but this in
// never used, so we omit it here and just return cindex.
//return is_continuous_index_inside_3d( cvector1, image->size );
return cindex;
}
#endif // DIM_3
//------------------------------------------------------------------------------
// OpenCL 1D implementation (long index, float return value) version of
// itkImage::GetPixel()
#ifdef DIM_1
float get_pixel_1d(
const long index,
__global const INPIXELTYPE *in,
const uint size )
{
float value = (float)( in[index] );
return value;
}
#endif // DIM_1
//------------------------------------------------------------------------------
// OpenCL 2D implementation (long index, float return value) version of
// itkImage::GetPixel()
#ifdef DIM_2
float get_pixel_2d(
const long2 index,
__global const INPIXELTYPE *in,
const uint2 size )
{
uint gidx = mad24( size.x, index.y, index.x );
float value = (float)( in[gidx] );
return value;
}
#endif // DIM_2
//------------------------------------------------------------------------------
// OpenCL 3D implementation (long index, float return value) version of
// itkImage::GetPixel()
#ifdef DIM_3
float get_pixel_3d(
const long3 index,
__global const INPIXELTYPE *in,
const uint3 size )
{
uint gidx = mad24( size.x, mad24( index.z, size.y, index.y ), index.x );
float value = (float)( in[gidx] );
return value;
}
#endif // DIM_3
|