1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
|
/*=========================================================================
*
* Copyright UMC Utrecht and contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
/*
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkAdvancedMatrixOffsetTransformBase.h,v $
Date: $Date: 2008-06-29 12:58:58 $
Version: $Revision: 1.20 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef itkAdvancedMatrixOffsetTransformBase_h
#define itkAdvancedMatrixOffsetTransformBase_h
#include <iostream>
#include "itkMatrix.h"
#include "itkAdvancedTransform.h"
#include "itkMacro.h"
#include "itkMacro.h"
namespace itk
{
/**
* Matrix and Offset transformation of a vector space (e.g. space coordinates)
*
* This class serves as a base class for transforms that can be expressed
* as a linear transformation plus a constant offset (e.g., affine, similarity
* and rigid transforms). This base class also provides the concept of
* using a center of rotation and a translation instead of an offset.
*
* As derived instances of this class are specializations of an affine
* transform, any two of these transformations may be composed and the result
* is an affine transformation. However, the order is important.
* Given two affine transformations T1 and T2, we will say that
* "precomposing T1 with T2" yields the transformation which applies
* T1 to the source, and then applies T2 to that result to obtain the
* target. Conversely, we will say that "postcomposing T1 with T2"
* yields the transformation which applies T2 to the source, and then
* applies T1 to that result to obtain the target. (Whether T1 or T2
* comes first lexicographically depends on whether you choose to
* write mappings from right-to-left or vice versa; we avoid the whole
* problem by referring to the order of application rather than the
* textual order.)
*
* There are three template parameters for this class:
*
* ScalarT The type to be used for scalar numeric values. Either
* float or double.
*
* NInputDimensions The number of dimensions of the input vector space.
*
* NOutputDimensions The number of dimensions of the output vector space.
*
* This class provides several methods for setting the matrix and offset
* defining the transform. To support the registration framework, the
* transform parameters can also be set as an Array<double> of size
* (NInputDimension + 1) * NOutputDimension using method SetParameters().
* The first (NOutputDimension x NInputDimension) parameters defines the
* matrix in row-major order (where the column index varies the fastest).
* The last NOutputDimension parameters defines the translation
* in each dimensions.
*
* \ingroup Transforms
*
*/
template <class TScalarType = double, // Data type for scalars
unsigned int NInputDimensions = 3, // Number of dimensions in the input space
unsigned int NOutputDimensions = 3>
// Number of dimensions in the output space
class ITK_TEMPLATE_EXPORT AdvancedMatrixOffsetTransformBase
: public AdvancedTransform<TScalarType, NInputDimensions, NOutputDimensions>
{
public:
/** Standard typedefs */
using Self = AdvancedMatrixOffsetTransformBase;
using Superclass = AdvancedTransform<TScalarType, NInputDimensions, NOutputDimensions>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** Run-time type information (and related methods). */
itkTypeMacro(AdvancedMatrixOffsetTransformBase, AdvancedTransform);
/** New macro for creation of through a Smart Pointer. */
itkNewMacro(Self);
/** Dimension of the domain space. */
itkStaticConstMacro(InputSpaceDimension, unsigned int, NInputDimensions);
itkStaticConstMacro(OutputSpaceDimension, unsigned int, NOutputDimensions);
itkStaticConstMacro(ParametersDimension, unsigned int, NOutputDimensions *(NInputDimensions + 1));
/** Typedefs from the Superclass. */
using typename Superclass::ScalarType;
using typename Superclass::ParametersType;
using typename Superclass::FixedParametersType;
using typename Superclass::NumberOfParametersType;
using typename Superclass::JacobianType;
using typename Superclass::InputVectorType;
using typename Superclass::OutputVectorType;
using typename Superclass::InputCovariantVectorType;
using typename Superclass::OutputCovariantVectorType;
using typename Superclass::InputVnlVectorType;
using typename Superclass::OutputVnlVectorType;
using typename Superclass::InputPointType;
using typename Superclass::OutputPointType;
using typename Superclass::TransformCategoryEnum;
using typename Superclass::NonZeroJacobianIndicesType;
using typename Superclass::SpatialJacobianType;
using typename Superclass::JacobianOfSpatialJacobianType;
using typename Superclass::SpatialHessianType;
using typename Superclass::JacobianOfSpatialHessianType;
using typename Superclass::InternalMatrixType;
/** Standard matrix type for this class. */
using MatrixType = Matrix<TScalarType, Self::OutputSpaceDimension, Self::InputSpaceDimension>;
/** Standard inverse matrix type for this class. */
using InverseMatrixType = Matrix<TScalarType, Self::InputSpaceDimension, Self::OutputSpaceDimension>;
/** Typedefs. */
using CenterType = InputPointType;
using OffsetType = OutputVectorType;
using TranslationType = OutputVectorType;
/** Set the transformation to an Identity
* This sets the matrix to identity and the Offset to null.
*/
virtual void
SetIdentity();
/** Set matrix of an AdvancedMatrixOffsetTransformBase
*
* This method sets the matrix of an AdvancedMatrixOffsetTransformBase to a
* value specified by the user.
*
* This updates the Offset wrt to current translation
* and center. See the warning regarding offset-versus-translation
* in the documentation for SetCenter.
*
* To define an affine transform, you must set the matrix,
* center, and translation OR the matrix and offset.
*/
virtual void
SetMatrix(const MatrixType & matrix)
{
this->m_Matrix = matrix;
this->ComputeOffset();
this->ComputeMatrixParameters();
this->m_MatrixMTime.Modified();
this->Modified();
}
/** Get matrix of an AdvancedMatrixOffsetTransformBase
*
* This method returns the value of the matrix of the
* AdvancedMatrixOffsetTransformBase.
* To define an affine transform, you must set the matrix,
* center, and translation OR the matrix and offset.
*/
const MatrixType &
GetMatrix() const
{
return this->m_Matrix;
}
/** Set center of rotation of an AdvancedMatrixOffsetTransformBase
*
* This method sets the center of rotation of an AdvancedMatrixOffsetTransformBase
* to a fixed point - for most transforms derived from this class,
* this point is not a "parameter" of the transform - the exception is that
* "centered" transforms have center as a parameter during optimization.
*
* This method updates offset wrt to current translation and matrix.
* That is, changing the center changes the transform!
*
* WARNING: When using the Center, we strongly recommend only changing the
* matrix and translation to define a transform. Changing a transform's
* center, changes the mapping between spaces - specifically, translation is
* not changed with respect to that new center, and so the offset is updated
* to * maintain the consistency with translation. If a center is not used,
* or is set before the matrix and the offset, then it is safe to change the
* offset directly.
* As a rule of thumb, if you wish to set the center explicitly, set
* before Offset computations are done.
*
* To define an affine transform, you must set the matrix,
* center, and translation OR the matrix and offset.
*/
void
SetCenter(const InputPointType & center)
{
this->m_Center = center;
this->ComputeOffset();
this->Modified();
}
/** Get center of rotation of the AdvancedMatrixOffsetTransformBase
*
* This method returns the point used as the fixed
* center of rotation for the AdvancedMatrixOffsetTransformBase.
* To define an affine transform, you must set the matrix,
* center, and translation OR the matrix and offset.
*/
const InputPointType &
GetCenter() const
{
return this->m_Center;
}
/** Set translation of an AdvancedMatrixOffsetTransformBase
*
* This method sets the translation of an AdvancedMatrixOffsetTransformBase.
* This updates Offset to reflect current translation.
* To define an affine transform, you must set the matrix,
* center, and translation OR the matrix and offset.
*/
void
SetTranslation(const OutputVectorType & translation)
{
this->m_Translation = translation;
this->ComputeOffset();
this->Modified();
}
/** Get translation component of the AdvancedMatrixOffsetTransformBase
*
* This method returns the translation used after rotation
* about the center point.
* To define an affine transform, you must set the matrix,
* center, and translation OR the matrix and offset.
*/
const OutputVectorType &
GetTranslation() const
{
return this->m_Translation;
}
/** Set the transformation from a container of parameters.
* The first (NOutputDimension x NInputDimension) parameters define the
* matrix and the last NOutputDimension parameters the translation.
* Offset is updated based on current center.
*/
void
SetParameters(const ParametersType & parameters) override;
/** Get the Transformation Parameters. */
const ParametersType &
GetParameters() const override;
/** Set the fixed parameters and update internal transformation. */
void
SetFixedParameters(const FixedParametersType &) override;
/** Get the Fixed Parameters. */
const FixedParametersType &
GetFixedParameters() const override;
/** Transform by an affine transformation
*
* This method applies the affine transform given by self to a
* given point or vector, returning the transformed point or
* vector. The TransformPoint method transforms its argument as
* an affine point, whereas the TransformVector method transforms
* its argument as a vector.
*/
OutputPointType
TransformPoint(const InputPointType & point) const override;
OutputVectorType
TransformVector(const InputVectorType & vector) const override;
OutputVnlVectorType
TransformVector(const InputVnlVectorType & vector) const override;
OutputCovariantVectorType
TransformCovariantVector(const InputCovariantVectorType & vector) const override;
/** Indicates that this transform is linear. That is, given two
* points P and Q, and scalar coefficients a and b, then
*
* T( a*P + b*Q ) = a * T(P) + b * T(Q)
*/
bool
IsLinear() const override
{
return true;
}
/** Indicates the category transform.
* e.g. an affine transform, or a local one, e.g. a deformation field.
*/
TransformCategoryEnum
GetTransformCategory() const override
{
return TransformCategoryEnum::Linear;
}
/** Compute the Jacobian of the transformation. */
void
GetJacobian(const InputPointType &, JacobianType &, NonZeroJacobianIndicesType &) const override;
/** Compute the spatial Jacobian of the transformation. */
void
GetSpatialJacobian(const InputPointType &, SpatialJacobianType &) const override;
/** Compute the spatial Hessian of the transformation. */
void
GetSpatialHessian(const InputPointType &, SpatialHessianType &) const override;
/** Compute the Jacobian of the spatial Jacobian of the transformation. */
void
GetJacobianOfSpatialJacobian(const InputPointType &,
JacobianOfSpatialJacobianType &,
NonZeroJacobianIndicesType &) const override;
/** Compute the Jacobian of the spatial Jacobian of the transformation. */
void
GetJacobianOfSpatialJacobian(const InputPointType &,
SpatialJacobianType &,
JacobianOfSpatialJacobianType &,
NonZeroJacobianIndicesType &) const override;
/** Compute the Jacobian of the spatial Hessian of the transformation. */
void
GetJacobianOfSpatialHessian(const InputPointType &,
JacobianOfSpatialHessianType &,
NonZeroJacobianIndicesType &) const override;
/** Compute both the spatial Hessian and the Jacobian of the
* spatial Hessian of the transformation. */
void
GetJacobianOfSpatialHessian(const InputPointType & inputPoint,
SpatialHessianType & sh,
JacobianOfSpatialHessianType & jsh,
NonZeroJacobianIndicesType & nonZeroJacobianIndices) const override;
protected:
/** Construct an AdvancedMatrixOffsetTransformBase object
*
* This method constructs a new AdvancedMatrixOffsetTransformBase object and
* initializes the matrix and offset parts of the transformation
* to values specified by the caller. If the arguments are
* omitted, then the AdvancedMatrixOffsetTransformBase is initialized to an identity
* transformation in the appropriate number of dimensions.
*/
explicit AdvancedMatrixOffsetTransformBase(const unsigned int paramDims = ParametersDimension);
/** Destroy an AdvancedMatrixOffsetTransformBase object. */
~AdvancedMatrixOffsetTransformBase() override = default;
/** Print contents of an AdvancedMatrixOffsetTransformBase. */
void
PrintSelf(std::ostream & s, Indent indent) const override;
virtual void
ComputeMatrixParameters();
virtual void
ComputeMatrix();
void
SetVarMatrix(const MatrixType & matrix)
{
this->m_Matrix = matrix;
this->m_MatrixMTime.Modified();
}
void
ComputeTranslation();
void
SetVarTranslation(const OutputVectorType & translation)
{
this->m_Translation = translation;
}
virtual void
ComputeOffset();
/** Get offset of an AdvancedMatrixOffsetTransformBase
*
* This method returns the offset value of the AdvancedMatrixOffsetTransformBase.
* To define an affine transform, you must set the matrix,
* center, and translation OR the matrix and offset.
*/
const OutputVectorType &
GetOffset() const
{
return this->m_Offset;
}
/** (spatial) Jacobians and Hessians can mostly be precomputed by this transform.
* Store them in these member variables.
* SpatialJacobian is simply m_Matrix */
NonZeroJacobianIndicesType m_NonZeroJacobianIndices{};
SpatialHessianType m_SpatialHessian{};
JacobianOfSpatialJacobianType m_JacobianOfSpatialJacobian{};
JacobianOfSpatialHessianType m_JacobianOfSpatialHessian{};
private:
// Private using-declarations, to avoid `-Woverloaded-virtual` warnings from GCC (GCC 11.4).
using Superclass::TransformCovariantVector;
using Superclass::TransformVector;
AdvancedMatrixOffsetTransformBase(const Self & other);
const Self &
operator=(const Self &);
/** Called by constructors: */
void
PrecomputeJacobians(unsigned int paramDims);
const InverseMatrixType &
GetInverseMatrix() const;
/** Member variables. */
MatrixType m_Matrix{ MatrixType::GetIdentity() }; // Matrix of the transformation
OutputVectorType m_Offset{}; // Offset of the transformation
mutable InverseMatrixType m_InverseMatrix{ InverseMatrixType::GetIdentity() }; // Inverse of the matrix
mutable bool m_Singular{ false }; // Is m_Inverse singular?
InputPointType m_Center{};
OutputVectorType m_Translation{};
/** To avoid recomputation of the inverse if not needed. */
TimeStamp m_MatrixMTime{};
mutable TimeStamp m_InverseMatrixMTime{};
};
} // namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkAdvancedMatrixOffsetTransformBase.hxx"
#endif
#endif /* itkAdvancedMatrixOffsetTransformBase_h */
|