1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
|
/*=========================================================================
*
* Copyright UMC Utrecht and contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkRecursiveBSplineTransform_hxx
#define itkRecursiveBSplineTransform_hxx
#include "itkRecursiveBSplineTransform.h"
#include <numeric> // For iota.
namespace itk
{
/**
* ********************* TransformPoint ****************************
*/
template <typename TScalar, unsigned int NDimensions, unsigned int VSplineOrder>
auto
RecursiveBSplineTransform<TScalar, NDimensions, VSplineOrder>::TransformPoint(const InputPointType & point) const
-> OutputPointType
{
/** Check if the coefficient image has been set. */
if (!this->m_CoefficientImages[0])
{
itkWarningMacro("B-spline coefficients have not been set");
return point;
}
/** Convert to continuous index. */
const ContinuousIndexType cindex = this->TransformPointToContinuousGridIndex(point);
// NOTE: if the support region does not lie totally within the grid
// we assume zero displacement and return the input point
if (!this->InsideValidRegion(cindex))
{
return point;
}
// Compute interpolation weighs and store them in weights1D
IndexType supportIndex;
const WeightsType weights1D = this->m_RecursiveBSplineWeightFunction.Evaluate(cindex, supportIndex);
/** Initialize (helper) variables. */
const OffsetValueType * bsplineOffsetTable = this->m_CoefficientImages[0]->GetOffsetTable();
OffsetValueType totalOffsetToSupportIndex = 0;
for (unsigned int j = 0; j < SpaceDimension; ++j)
{
totalOffsetToSupportIndex += supportIndex[j] * bsplineOffsetTable[j];
}
ScalarType * mu[SpaceDimension];
for (unsigned int j = 0; j < SpaceDimension; ++j)
{
mu[j] = this->m_CoefficientImages[j]->GetBufferPointer() + totalOffsetToSupportIndex;
}
/** Call the recursive TransformPoint function. */
ScalarType displacement[SpaceDimension];
ImplementationType::TransformPoint(displacement, mu, bsplineOffsetTable, weights1D.data());
OutputPointType outputPoint;
// The output point is the start point + displacement.
for (unsigned int j = 0; j < SpaceDimension; ++j)
{
outputPoint[j] = displacement[j] + point[j];
}
return outputPoint;
} // end TransformPoint()
/**
* ********************* GetJacobian ****************************
*/
template <class TScalar, unsigned int NDimensions, unsigned int VSplineOrder>
void
RecursiveBSplineTransform<TScalar, NDimensions, VSplineOrder>::GetJacobian(
const InputPointType & inputPoint,
JacobianType & jacobian,
NonZeroJacobianIndicesType & nonZeroJacobianIndices) const
{
/** Convert the physical point to a continuous index, which
* is needed for the 'Evaluate()' functions below.
*/
const ContinuousIndexType cindex = this->TransformPointToContinuousGridIndex(inputPoint);
/** Initialize. */
const NumberOfParametersType nnzji = this->GetNumberOfNonZeroJacobianIndices();
if ((jacobian.cols() != nnzji) || (jacobian.rows() != SpaceDimension))
{
jacobian.set_size(SpaceDimension, nnzji);
jacobian.fill(0.0);
}
/** NOTE: if the support region does not lie totally within the grid
* we assume zero displacement and zero Jacobian.
*/
if (!this->InsideValidRegion(cindex))
{
nonZeroJacobianIndices.resize(this->GetNumberOfNonZeroJacobianIndices());
std::iota(nonZeroJacobianIndices.begin(), nonZeroJacobianIndices.end(), 0u);
return;
}
/** Compute the interpolation weights.
* In contrast to the normal B-spline weights function, the recursive version
* returns the individual weights instead of the multiplied ones.
*/
IndexType supportIndex;
const WeightsType weights1D = this->m_RecursiveBSplineWeightFunction.Evaluate(cindex, supportIndex);
/** Recursively compute the first numberOfIndices entries of the Jacobian.
* They are directly written in the Jacobian matrix memory block.
* The pointer has changed after this function call.
*/
ParametersValueType * jacobianPointer = jacobian.data_block();
ImplementationType::GetJacobian(jacobianPointer, weights1D.data(), 1.0);
/** Compute the nonzero Jacobian indices.
* Takes a significant portion of the computation time of this function.
*/
const RegionType supportRegion(supportIndex, WeightsFunctionType::SupportSize);
this->ComputeNonZeroJacobianIndices(nonZeroJacobianIndices, supportRegion);
} // end GetJacobian()
/**
* ********************* EvaluateJacobianAndImageGradientProduct ****************************
*/
template <class TScalar, unsigned int NDimensions, unsigned int VSplineOrder>
void
RecursiveBSplineTransform<TScalar, NDimensions, VSplineOrder>::EvaluateJacobianWithImageGradientProduct(
const InputPointType & inputPoint,
const MovingImageGradientType & movingImageGradient,
DerivativeType & imageJacobian,
NonZeroJacobianIndicesType & nonZeroJacobianIndices) const
{
/** Convert the physical point to a continuous index, which
* is needed for the 'Evaluate()' functions below.
*/
const ContinuousIndexType cindex = this->TransformPointToContinuousGridIndex(inputPoint);
/** NOTE: if the support region does not lie totally within the grid
* we assume zero displacement and zero Jacobian.
*/
const NumberOfParametersType nnzji = this->GetNumberOfNonZeroJacobianIndices();
if (!this->InsideValidRegion(cindex))
{
nonZeroJacobianIndices.resize(nnzji);
std::iota(nonZeroJacobianIndices.begin(), nonZeroJacobianIndices.end(), 0u);
return;
}
/** Compute the interpolation weights.
* In contrast to the normal B-spline weights function, the recursive version
* returns the individual weights instead of the multiplied ones.
*/
IndexType supportIndex;
const WeightsType weights1D = this->m_RecursiveBSplineWeightFunction.Evaluate(cindex, supportIndex);
/** Recursively compute the inner product of the Jacobian and the moving image gradient.
* The pointer has changed after this function call.
*/
// ParametersValueType migArray[ SpaceDimension ];
double migArray[SpaceDimension]; // InternalFloatType
for (unsigned int j = 0; j < SpaceDimension; ++j)
{
migArray[j] = movingImageGradient[j];
}
ParametersValueType * imageJacobianPointer = imageJacobian.data_block();
ImplementationType::EvaluateJacobianWithImageGradientProduct(imageJacobianPointer, migArray, weights1D.data(), 1.0);
/** Setup support region needed for the nonZeroJacobianIndices. */
const RegionType supportRegion(supportIndex, WeightsFunctionType::SupportSize);
/** Compute the nonzero Jacobian indices.
* Takes a significant portion of the computation time of this function.
*/
this->ComputeNonZeroJacobianIndices(nonZeroJacobianIndices, supportRegion);
} // end EvaluateJacobianWithImageGradientProduct()
/**
* ********************* GetSpatialJacobian ****************************
*/
template <class TScalar, unsigned int NDimensions, unsigned int VSplineOrder>
void
RecursiveBSplineTransform<TScalar, NDimensions, VSplineOrder>::GetSpatialJacobian(const InputPointType & inputPoint,
SpatialJacobianType & sj) const
{
/** Convert the physical point to a continuous index, which
* is needed for the 'Evaluate()' functions below.
*/
const ContinuousIndexType cindex = this->TransformPointToContinuousGridIndex(inputPoint);
// NOTE: if the support region does not lie totally within the grid
// we assume zero displacement and identity spatial Jacobian
if (!this->InsideValidRegion(cindex))
{
sj.SetIdentity();
return;
}
/** Compute the interpolation weights.
* In contrast to the normal B-spline weights function, the recursive version
* returns the individual weights instead of the multiplied ones.
*/
IndexType supportIndex;
const WeightsType weights1D = this->m_RecursiveBSplineWeightFunction.Evaluate(cindex, supportIndex);
const WeightsType derivativeWeights1D =
this->m_RecursiveBSplineWeightFunction.EvaluateDerivative(cindex, supportIndex);
/** Compute the offset to the start index. */
const OffsetValueType * bsplineOffsetTable = this->m_CoefficientImages[0]->GetOffsetTable();
OffsetValueType totalOffsetToSupportIndex = 0;
for (unsigned int j = 0; j < SpaceDimension; ++j)
{
totalOffsetToSupportIndex += supportIndex[j] * bsplineOffsetTable[j];
}
/** Get handles to the mu's. */
ScalarType * mu[SpaceDimension];
for (unsigned int j = 0; j < SpaceDimension; ++j)
{
mu[j] = this->m_CoefficientImages[j]->GetBufferPointer() + totalOffsetToSupportIndex;
}
/** Recursively compute the spatial Jacobian. */
double spatialJacobian[SpaceDimension * (SpaceDimension + 1)]; // double
ImplementationType::GetSpatialJacobian(
spatialJacobian, mu, bsplineOffsetTable, weights1D.data(), derivativeWeights1D.data());
/** Copy the correct elements to the spatial Jacobian.
* The first SpaceDimension elements are actually the displacement, i.e. the recursive
* function GetSpatialJacobian() has the TransformPoint as a free by-product.
*/
for (unsigned int i = 0; i < SpaceDimension; ++i)
{
for (unsigned int j = 0; j < SpaceDimension; ++j)
{
sj(i, j) = spatialJacobian[i + (j + 1) * SpaceDimension];
}
}
/** Take into account grid spacing and direction cosines. */
sj *= this->m_PointToIndexMatrix2;
/** Add the identity matrix, as this is a transformation, not displacement. */
for (unsigned int j = 0; j < SpaceDimension; ++j)
{
sj(j, j) += 1.0;
}
} // end GetSpatialJacobian()
/**
* ********************* GetSpatialHessian ****************************
*/
template <class TScalar, unsigned int NDimensions, unsigned int VSplineOrder>
void
RecursiveBSplineTransform<TScalar, NDimensions, VSplineOrder>::GetSpatialHessian(const InputPointType & inputPoint,
SpatialHessianType & sh) const
{
/** Convert the physical point to a continuous index, which
* is needed for the evaluate functions below.
*/
const ContinuousIndexType cindex = this->TransformPointToContinuousGridIndex(inputPoint);
// NOTE: if the support region does not lie totally within the grid
// we assume zero displacement and zero spatial Hessian
if (!this->InsideValidRegion(cindex))
{
for (unsigned int i = 0; i < sh.Size(); ++i)
{
sh[i].Fill(0.0);
}
return;
}
/** Compute the interpolation weights.
* In contrast to the normal B-spline weights function, the recursive version
* returns the individual weights instead of the multiplied ones.
*/
IndexType supportIndex;
const WeightsType weights1D = this->m_RecursiveBSplineWeightFunction.Evaluate(cindex, supportIndex);
const WeightsType derivativeWeights1D =
this->m_RecursiveBSplineWeightFunction.EvaluateDerivative(cindex, supportIndex);
const WeightsType hessianWeights1D =
this->m_RecursiveBSplineWeightFunction.EvaluateSecondOrderDerivative(cindex, supportIndex);
/** Compute the offset to the start index. */
const OffsetValueType * bsplineOffsetTable = this->m_CoefficientImages[0]->GetOffsetTable();
OffsetValueType totalOffsetToSupportIndex = 0;
for (unsigned int j = 0; j < SpaceDimension; ++j)
{
totalOffsetToSupportIndex += supportIndex[j] * bsplineOffsetTable[j];
}
/** Get handles to the mu's. */
ScalarType * mu[SpaceDimension];
for (unsigned int j = 0; j < SpaceDimension; ++j)
{
mu[j] = this->m_CoefficientImages[j]->GetBufferPointer() + totalOffsetToSupportIndex;
}
/** Recursively compute the spatial Hessian. */
double spatialHessian[SpaceDimension * (SpaceDimension + 1) * (SpaceDimension + 2) / 2];
ImplementationType::GetSpatialHessian(
spatialHessian, mu, bsplineOffsetTable, weights1D.data(), derivativeWeights1D.data(), hessianWeights1D.data());
/** Copy the correct elements to the spatial Hessian.
* The first SpaceDimension elements are actually the displacement, i.e. the recursive
* function GetSpatialHessian() has the TransformPoint as a free by-product.
* In addition, the spatial Jacobian is a by-product.
*/
{
unsigned int k = 2 * SpaceDimension;
for (unsigned int i = 0; i < SpaceDimension; ++i)
{
for (unsigned int j = 0; j < (i + 1) * SpaceDimension; ++j)
{
sh[j % SpaceDimension](i, j / SpaceDimension) = spatialHessian[k + j];
}
k += (i + 2) * SpaceDimension;
}
}
/** Mirror, as only the lower triangle is now filled. */
for (unsigned int i = 0; i < SpaceDimension; ++i)
{
for (unsigned int j = 0; j < SpaceDimension - 1; ++j)
{
for (unsigned int k = 1; k < SpaceDimension; ++k)
{
sh[i](j, k) = sh[i](k, j);
}
}
}
/** Take into account grid spacing and direction matrix. */
for (unsigned int dim = 0; dim < SpaceDimension; ++dim)
{
sh[dim] = this->m_PointToIndexMatrixTransposed2 * (sh[dim] * this->m_PointToIndexMatrix2);
}
} // end GetSpatialHessian()
/**
* ********************* GetJacobianOfSpatialJacobian ****************************
*/
template <class TScalar, unsigned int NDimensions, unsigned int VSplineOrder>
void
RecursiveBSplineTransform<TScalar, NDimensions, VSplineOrder>::GetJacobianOfSpatialJacobian(
const InputPointType & inputPoint,
JacobianOfSpatialJacobianType & jsj,
NonZeroJacobianIndicesType & nonZeroJacobianIndices) const
{
// Can only compute Jacobian if parameters are set via
// SetParameters or SetParametersByValue
if (this->m_InputParametersPointer == nullptr)
{
itkExceptionMacro("Cannot compute Jacobian: parameters not set");
}
jsj.resize(this->GetNumberOfNonZeroJacobianIndices());
/** Convert the physical point to a continuous index, which
* is needed for the 'Evaluate()' functions below.
*/
const ContinuousIndexType cindex = this->TransformPointToContinuousGridIndex(inputPoint);
// NOTE: if the support region does not lie totally within the grid
// we assume zero displacement and zero jsj.
if (!this->InsideValidRegion(cindex))
{
for (auto & matrix : jsj)
{
matrix.Fill(0.0);
}
nonZeroJacobianIndices.resize(this->GetNumberOfNonZeroJacobianIndices());
std::iota(nonZeroJacobianIndices.begin(), nonZeroJacobianIndices.end(), 0u);
return;
}
/** Compute the interpolation weights.
* In contrast to the normal B-spline weights function, the recursive version
* returns the individual weights instead of the multiplied ones.
*/
IndexType supportIndex;
const WeightsType weights1D = this->m_RecursiveBSplineWeightFunction.Evaluate(cindex, supportIndex);
const WeightsType derivativeWeights1D =
this->m_RecursiveBSplineWeightFunction.EvaluateDerivative(cindex, supportIndex);
/** Allocate memory for jsj. If you want also the Jacobian,
* numberOfIndices more elements are needed.
*/
const double dummy[1] = { 1.0 };
/** Recursively expand all weights (destroys dummy), and multiply with dc. */
const double * dc = this->m_PointToIndexMatrix2.GetVnlMatrix().data_block();
double * jsjPtr2 = jsj[0].GetVnlMatrix().data_block();
ImplementationType::GetJacobianOfSpatialJacobian(jsjPtr2, weights1D.data(), derivativeWeights1D.data(), dc, dummy);
/** Setup support region needed for the nonZeroJacobianIndices. */
const RegionType supportRegion(supportIndex, WeightsFunctionType::SupportSize);
/** Compute the nonzero Jacobian indices. */
this->ComputeNonZeroJacobianIndices(nonZeroJacobianIndices, supportRegion);
} // end GetJacobianOfSpatialJacobian()
/**
* ********************* GetJacobianOfSpatialJacobian ****************************
*/
template <class TScalar, unsigned int NDimensions, unsigned int VSplineOrder>
void
RecursiveBSplineTransform<TScalar, NDimensions, VSplineOrder>::GetJacobianOfSpatialJacobian(
const InputPointType & inputPoint,
SpatialJacobianType & sj,
JacobianOfSpatialJacobianType & jsj,
NonZeroJacobianIndicesType & nonZeroJacobianIndices) const
{
this->GetJacobianOfSpatialJacobian(inputPoint, jsj, nonZeroJacobianIndices);
this->GetSpatialJacobian(inputPoint, sj);
} // end GetJacobianOfSpatialJacobian()
/**
* ********************* GetJacobianOfSpatialHessian ****************************
*/
template <class TScalar, unsigned int NDimensions, unsigned int VSplineOrder>
void
RecursiveBSplineTransform<TScalar, NDimensions, VSplineOrder>::GetJacobianOfSpatialHessian(
const InputPointType & inputPoint,
JacobianOfSpatialHessianType & jsh,
NonZeroJacobianIndicesType & nonZeroJacobianIndices) const
{
// Can only compute Jacobian if parameters are set via
// SetParameters or SetParametersByValue
if (this->m_InputParametersPointer == nullptr)
{
itkExceptionMacro("Cannot compute Jacobian: parameters not set");
}
jsh.resize(this->GetNumberOfNonZeroJacobianIndices());
/** Convert the physical point to a continuous index, which
* is needed for the 'Evaluate()' functions below.
*/
const ContinuousIndexType cindex = this->TransformPointToContinuousGridIndex(inputPoint);
// NOTE: if the support region does not lie totally within the grid
// we assume zero displacement and identity sj and zero jsj.
if (!this->InsideValidRegion(cindex))
{
for (unsigned int i = 0; i < jsh.size(); ++i)
{
for (unsigned int j = 0; j < jsh[i].Size(); ++j)
{
jsh[i][j].Fill(0.0);
}
}
nonZeroJacobianIndices.resize(this->GetNumberOfNonZeroJacobianIndices());
std::iota(nonZeroJacobianIndices.begin(), nonZeroJacobianIndices.end(), 0u);
return;
}
/** Compute the interpolation weights.
* In contrast to the normal B-spline weights function, the recursive version
* returns the individual weights instead of the multiplied ones.
*/
IndexType supportIndex;
const WeightsType weights1D = this->m_RecursiveBSplineWeightFunction.Evaluate(cindex, supportIndex);
const WeightsType derivativeWeights1D =
this->m_RecursiveBSplineWeightFunction.EvaluateDerivative(cindex, supportIndex);
const WeightsType hessianWeights1D =
this->m_RecursiveBSplineWeightFunction.EvaluateSecondOrderDerivative(cindex, supportIndex);
/** Recursively expand all weights (destroys dummy and jshPtr points to last element afterwards).
* This version also performs pre- and post-multiplication with the matrices dc^T and dc, respectively.
* Other differences are that the complete matrix is returned, not just the upper triangle.
* And the results are directly written to the final jsh, avoiding an additional copy.
*/
double * jshPtr = jsh[0][0].GetVnlMatrix().data_block();
const double * dc = this->m_PointToIndexMatrix2.GetVnlMatrix().data_block();
const double dummy[1] = { 1.0 };
ImplementationType::GetJacobianOfSpatialHessian(
jshPtr, weights1D.data(), derivativeWeights1D.data(), hessianWeights1D.data(), dc, dummy);
/** Setup support region needed for the nonZeroJacobianIndices. */
const RegionType supportRegion(supportIndex, WeightsFunctionType::SupportSize);
/** Compute the nonzero Jacobian indices. */
this->ComputeNonZeroJacobianIndices(nonZeroJacobianIndices, supportRegion);
} // end GetJacobianOfSpatialHessian()
/**
* ********************* GetJacobianOfSpatialHessian ****************************
*/
template <class TScalar, unsigned int NDimensions, unsigned int VSplineOrder>
void
RecursiveBSplineTransform<TScalar, NDimensions, VSplineOrder>::GetJacobianOfSpatialHessian(
const InputPointType & inputPoint,
SpatialHessianType & sh,
JacobianOfSpatialHessianType & jsh,
NonZeroJacobianIndicesType & nonZeroJacobianIndices) const
{
this->GetJacobianOfSpatialHessian(inputPoint, jsh, nonZeroJacobianIndices);
this->GetSpatialHessian(inputPoint, sh);
} // end GetJacobianOfSpatialHessian()
/**
* ********************* ComputeNonZeroJacobianIndices ****************************
*/
template <class TScalar, unsigned int NDimensions, unsigned int VSplineOrder>
void
RecursiveBSplineTransform<TScalar, NDimensions, VSplineOrder>::ComputeNonZeroJacobianIndices(
NonZeroJacobianIndicesType & nonZeroJacobianIndices,
const RegionType & supportRegion) const
{
/** Initialize some helper variables. */
const unsigned long parametersPerDim = this->GetNumberOfParametersPerDimension();
nonZeroJacobianIndices.resize(this->GetNumberOfNonZeroJacobianIndices());
/** Compute total offset at start index. */
const IndexType startIndex = supportRegion.GetIndex();
const OffsetValueType * gridOffsetTable = this->m_CoefficientImages[0]->GetOffsetTable();
OffsetValueType totalOffsetToSupportIndex = 0;
for (unsigned int j = 0; j < SpaceDimension; ++j)
{
totalOffsetToSupportIndex += startIndex[j] * gridOffsetTable[j];
}
/** Call the recursive implementation. */
unsigned long currentIndex = totalOffsetToSupportIndex;
unsigned long * nzjiPointer = &nonZeroJacobianIndices[0];
ImplementationType::ComputeNonZeroJacobianIndices(nzjiPointer, parametersPerDim, currentIndex, gridOffsetTable);
} // end ComputeNonZeroJacobianIndices()
} // end namespace itk
#endif
|