1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
|
/*=========================================================================
*
* Copyright UMC Utrecht and contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkRecursiveBSplineTransformImplementation_h
#define itkRecursiveBSplineTransformImplementation_h
#include "itkRecursiveBSplineInterpolationWeightFunction.h"
// Standard C++ header files:
#include <algorithm> // For copy_n and fill_n.
#include <cassert>
#include <cstring> // For memcpy.
namespace itk
{
/** \class RecursiveBSplineTransformImplementation
*
* \brief This helper class contains the actual implementation of the
* recursive B-spline transform
*
* Compared to the RecursiveBSplineTransformImplementation class, this
* class works as a vector operator, and is therefore also templated
* over the OutputDimension.
*
* Note: More optimized code can be found in itkRecursiveBSplineImplementation.h
*
* \ingroup ITKTransform
*/
template <unsigned int OutputDimension, unsigned int SpaceDimension, unsigned int SplineOrder, class TScalar>
class ITK_TEMPLATE_EXPORT RecursiveBSplineTransformImplementation
{
public:
using InternalFloatType = double;
/** Helper constant variable. */
itkStaticConstMacro(HelperConstVariable, unsigned int, (SpaceDimension - 1) * (SplineOrder + 1));
/** Typedef to know the number of indices at compile time. */
using RecursiveBSplineWeightFunctionType =
itk::RecursiveBSplineInterpolationWeightFunction<TScalar, OutputDimension, SplineOrder>;
itkStaticConstMacro(BSplineNumberOfIndices, unsigned int, RecursiveBSplineWeightFunctionType::NumberOfIndices);
/** TransformPoint recursive implementation. */
static void
TransformPoint(TScalar * const opp,
const TScalar * const * const mu,
const OffsetValueType * const gridOffsetTable,
const double * const weights1D)
{
/** Make a copy of the pointers to mu. The pointer will move later. */
const TScalar * tmp_mu[OutputDimension];
std::copy_n(mu, OutputDimension, tmp_mu);
/** Create a temporary opp and initialize the original. */
TScalar tmp_opp[OutputDimension];
std::fill_n(opp, OutputDimension, 0.0);
const OffsetValueType bot = gridOffsetTable[SpaceDimension - 1];
for (unsigned int k = 0; k <= SplineOrder; ++k)
{
/** Recurse. */
RecursiveBSplineTransformImplementation<OutputDimension, SpaceDimension - 1, SplineOrder, TScalar>::
TransformPoint(tmp_opp, tmp_mu, gridOffsetTable, weights1D);
/** Accumulate the weights. */
for (unsigned int j = 0; j < OutputDimension; ++j)
{
opp[j] += tmp_opp[j] * weights1D[k + HelperConstVariable];
// move to the next mu
tmp_mu[j] += bot;
}
}
} // end TransformPoint()
/** GetJacobian recursive implementation. */
static void
GetJacobian(TScalar *& jacobians, const double * const weights1D, const double value)
{
for (unsigned int k = 0; k <= SplineOrder; ++k)
{
/** Recurse. */
RecursiveBSplineTransformImplementation<OutputDimension, SpaceDimension - 1, SplineOrder, TScalar>::GetJacobian(
jacobians, weights1D, value * weights1D[k + HelperConstVariable]);
}
} // end GetJacobian()
/** EvaluateJacobianWithImageGradientProduct recursive implementation. */
static void
EvaluateJacobianWithImageGradientProduct(TScalar *& imageJacobian,
const InternalFloatType * const movingImageGradient,
const double * const weights1D,
const double value)
{
for (unsigned int k = 0; k <= SplineOrder; ++k)
{
/** Recurse. */
RecursiveBSplineTransformImplementation<OutputDimension, SpaceDimension - 1, SplineOrder, TScalar>::
EvaluateJacobianWithImageGradientProduct(
imageJacobian, movingImageGradient, weights1D, value * weights1D[k + HelperConstVariable]);
}
} // end EvaluateJacobianWithImageGradientProduct()
/** ComputeNonZeroJacobianIndices recursive implementation. */
static void
ComputeNonZeroJacobianIndices(unsigned long *& nzji,
const unsigned long parametersPerDim,
unsigned long currentIndex,
const OffsetValueType * const gridOffsetTable)
{
const OffsetValueType bot = gridOffsetTable[SpaceDimension - 1];
for (unsigned int k = 0; k <= SplineOrder; ++k)
{
/** Recurse. */
RecursiveBSplineTransformImplementation<OutputDimension, SpaceDimension - 1, SplineOrder, TScalar>::
ComputeNonZeroJacobianIndices(nzji, parametersPerDim, currentIndex, gridOffsetTable);
currentIndex += bot;
}
} // end ComputeNonZeroJacobianIndices()
/** GetSpatialJacobian recursive implementation.
* As an (almost) free by-product this function delivers the displacement,
* i.e. the TransformPoint() function.
*/
static void
GetSpatialJacobian(InternalFloatType * const sj,
const TScalar * const * const mu,
const OffsetValueType * const gridOffsetTable,
const double * const weights1D, // normal B-spline weights
const double * const derivativeWeights1D) // 1st derivative of B-spline
{
/** Make a copy of the pointers to mu. The pointer will move later. */
const TScalar * tmp_mu[OutputDimension];
std::copy_n(mu, OutputDimension, tmp_mu);
/** Create a temporary sj and initialize the original. */
InternalFloatType tmp_sj[OutputDimension * SpaceDimension];
for (unsigned int n = 0; n < OutputDimension * (SpaceDimension + 1); ++n)
{
sj[n] = 0.0;
}
const OffsetValueType bot = gridOffsetTable[SpaceDimension - 1];
for (unsigned int k = 0; k <= SplineOrder; ++k)
{
/** Recurse. */
RecursiveBSplineTransformImplementation<OutputDimension, SpaceDimension - 1, SplineOrder, TScalar>::
GetSpatialJacobian(tmp_sj, tmp_mu, gridOffsetTable, weights1D, derivativeWeights1D);
/** Accumulate the weights part. */
for (unsigned int n = 0; n < OutputDimension * SpaceDimension; ++n)
{
sj[n] += tmp_sj[n] * weights1D[k + HelperConstVariable];
}
/** Accumulate the derivative weights part. */
for (unsigned int j = 0; j < OutputDimension; ++j)
{
sj[OutputDimension * SpaceDimension + j] += tmp_sj[j] * derivativeWeights1D[k + HelperConstVariable];
// move to the next mu
tmp_mu[j] += bot;
}
}
} // end GetSpatialJacobian()
/** GetSpatialHessian recursive implementation.
* As an (almost) free by-product this function delivers the displacement,
* i.e. the TransformPoint() function, as well as the SpatialJacobian.
*
* Specifically, sh is the output argument. It should be allocated with a size
* OutputDimension * ( SpaceDimension + 1 ) * ( SpaceDimension + 2 ) / 2.
* sh should point to allocated memory, but this function initializes sh.
*
* Upon return sh contains the spatial Hessian, spatial Jacobian and transformpoint. With
* Hk = [ transformPoint spatialJacobian'
* spatialJacobian spatialHessian ] .
* (Hk specifies all info of dimension (element) k (< OutputDimension) of the point
* and spatialJacobian is a vector of the derivative of this point with respect to the dimensions.)
* The i,j (both < SpaceDimension) element of Hk is stored in:
* i<=j : sh[ k + OutputDimension * (i + j*(j+1)/2 ) ]
* i>=j : sh[ k + OutputDimension * (j + i*(i+1)/2 ) ]
*
* Note that we store only one of the symmetric halves of Hk.
*/
static void
GetSpatialHessian(InternalFloatType * const sh,
const TScalar * const * const mu,
const OffsetValueType * const gridOffsetTable,
const double * const weights1D, // normal B-spline weights
const double * const derivativeWeights1D, // 1st derivative of B-spline
const double * const hessianWeights1D) // 2nd derivative of B-spline
{
const unsigned int helperDim1 = OutputDimension * SpaceDimension * (SpaceDimension + 1) / 2;
const unsigned int helperDim2 = OutputDimension * (SpaceDimension + 1) * (SpaceDimension + 2) / 2;
/** Make a copy of the pointers to mu. The pointer will move later. */
const TScalar * tmp_mu[OutputDimension];
std::copy_n(mu, OutputDimension, tmp_mu);
/** Create a temporary sh and initialize the original. */
InternalFloatType tmp_sh[helperDim1];
for (unsigned int n = 0; n < helperDim2; ++n)
{
sh[n] = 0.0;
}
const OffsetValueType bot = gridOffsetTable[SpaceDimension - 1];
for (unsigned int k = 0; k <= SplineOrder; ++k)
{
/** Recurse. */
RecursiveBSplineTransformImplementation<OutputDimension, SpaceDimension - 1, SplineOrder, TScalar>::
GetSpatialHessian(tmp_sh, tmp_mu, gridOffsetTable, weights1D, derivativeWeights1D, hessianWeights1D);
/** Accumulate the weights part. */
for (unsigned int n = 0; n < helperDim1; ++n)
{
sh[n] += tmp_sh[n] * weights1D[k + HelperConstVariable];
}
/** Accumulate the derivative weights part. */
for (unsigned int n = 0; n < SpaceDimension; ++n)
{
for (unsigned int j = 0; j < OutputDimension; ++j)
{
sh[OutputDimension * n + helperDim1 + j] +=
tmp_sh[OutputDimension * n * (n + 1) / 2 + j] * derivativeWeights1D[k + HelperConstVariable];
}
}
/** Accumulate the Hessian weights part. */
for (unsigned int j = 0; j < OutputDimension; ++j)
{
sh[helperDim2 - OutputDimension + j] += tmp_sh[j] * hessianWeights1D[k + HelperConstVariable];
// move to the next mu
tmp_mu[j] += bot;
}
}
} // end GetSpatialHessian()
/** GetJacobianOfSpatialJacobian recursive implementation.
* Multiplication with the direction cosines is performed in the end-case.
*/
static void
GetJacobianOfSpatialJacobian(InternalFloatType *& jsj_out,
const double * const weights1D, // normal B-spline weights
const double * const derivativeWeights1D, // 1st derivative of B-spline
const double * const directionCosines,
const InternalFloatType * const jsj)
{
const unsigned int helperDim = OutputDimension - SpaceDimension + 1;
/** Create a temporary jsj. Here, an additional element is needed for the Jacobian. */
InternalFloatType tmp_jsj[helperDim + 1];
for (unsigned int k = 0; k <= SplineOrder; ++k)
{
const double w = weights1D[k + HelperConstVariable];
const double dw = derivativeWeights1D[k + HelperConstVariable];
/** Initialize the weights part of the temporary jsj. */
for (unsigned int n = 0; n < helperDim; ++n)
{
tmp_jsj[n] = jsj[n] * w;
}
/** Initialize the derivative weights part. */
tmp_jsj[helperDim] = jsj[0] * dw;
/** Recurse. */
RecursiveBSplineTransformImplementation<OutputDimension, SpaceDimension - 1, SplineOrder, TScalar>::
GetJacobianOfSpatialJacobian(jsj_out, weights1D, derivativeWeights1D, directionCosines, tmp_jsj);
}
} // end GetJacobianOfSpatialJacobian()
/** GetJacobianOfSpatialHessian recursive implementation.
* Multiplication with the direction cosines is performed in the end - case.
*/
static void
GetJacobianOfSpatialHessian(InternalFloatType *& jsh_out,
const double * const weights1D, // normal B-spline weights
const double * const derivativeWeights1D, // 1st derivative of B-spline
const double * const hessianWeights1D, // 2nd derivative of B-spline
const double * const directionCosines,
const InternalFloatType * const jsh)
{
const unsigned int helperDim = OutputDimension - SpaceDimension;
const unsigned int helperDimW = (helperDim + 1) * (helperDim + 2) / 2;
const unsigned int helperDimDW = helperDim + 1;
/** Create a temporary jsh. */
InternalFloatType tmp_jsh[helperDimW + helperDimDW + 1];
for (unsigned int k = 0; k <= SplineOrder; ++k)
{
/** Store some weights. */
const double w = weights1D[k + HelperConstVariable];
const double dw = derivativeWeights1D[k + HelperConstVariable];
const double hw = hessianWeights1D[k + HelperConstVariable];
/** Initialize the weights part of the temporary jsh. */
for (unsigned int n = 0; n < helperDimW; ++n)
{
tmp_jsh[n] = jsh[n] * w;
}
/** Initialize the derivative weights part. */
for (unsigned int n = 0; n < helperDimDW; ++n)
{
unsigned int nn = n * (n + 1) / 2;
tmp_jsh[n + helperDimW] = jsh[nn] * dw;
}
/** Initialize the Hessian weights part. */
tmp_jsh[helperDimW + helperDimDW] = jsh[0] * hw;
/** Recurse. */
RecursiveBSplineTransformImplementation<OutputDimension, SpaceDimension - 1, SplineOrder, TScalar>::
GetJacobianOfSpatialHessian(
jsh_out, weights1D, derivativeWeights1D, hessianWeights1D, directionCosines, tmp_jsh);
}
} // end GetJacobianOfSpatialHessian()
};
/** \class RecursiveBSplineTransformImplementation
*
* \brief Define the end case for SpaceDimension = 0.
*/
template <unsigned int OutputDimension, unsigned int SplineOrder, class TScalar>
class ITK_TEMPLATE_EXPORT RecursiveBSplineTransformImplementation<OutputDimension, 0, SplineOrder, TScalar>
{
public:
using InternalFloatType = double;
/** Typedef to know the number of indices at compile time. */
using RecursiveBSplineWeightFunctionType =
itk::RecursiveBSplineInterpolationWeightFunction<TScalar, OutputDimension, SplineOrder>;
itkStaticConstMacro(BSplineNumberOfIndices, unsigned int, RecursiveBSplineWeightFunctionType::NumberOfIndices);
/** TransformPoint recursive implementation. */
static void
TransformPoint(TScalar * const opp,
const TScalar * const * const mu,
const OffsetValueType * const itkNotUsed(gridOffsetTable),
const double * const itkNotUsed(weights1D))
{
for (unsigned int j = 0; j < OutputDimension; ++j)
{
opp[j] = *(mu[j]);
}
} // end TransformPoint()
/** GetJacobian recursive implementation. */
static void
GetJacobian(TScalar *& jacobians, const double * const itkNotUsed(weights1D), const double value)
{
unsigned long offset = 0;
for (unsigned int j = 0; j < OutputDimension; ++j)
{
offset = j * BSplineNumberOfIndices * (OutputDimension + 1);
jacobians[offset] = value;
}
++jacobians;
} // end GetJacobian()
/** EvaluateJacobianWithImageGradientProduct recursive implementation. */
static void
EvaluateJacobianWithImageGradientProduct(TScalar *& imageJacobian,
const InternalFloatType * const movingImageGradient,
const double * const itkNotUsed(weights1D),
const double value)
{
for (unsigned int j = 0; j < OutputDimension; ++j)
{
*(imageJacobian + j * BSplineNumberOfIndices) = value * movingImageGradient[j];
}
++imageJacobian;
} // end EvaluateJacobianWithImageGradientProduct()
/** ComputeNonZeroJacobianIndices recursive implementation. */
static void
ComputeNonZeroJacobianIndices(unsigned long *& nzji,
const unsigned long parametersPerDim,
const unsigned long currentIndex,
const OffsetValueType * const itkNotUsed(gridOffsetTable))
{
for (unsigned int j = 0; j < OutputDimension; ++j)
{
nzji[j * BSplineNumberOfIndices] = currentIndex + j * parametersPerDim;
}
++nzji;
} // end ComputeNonZeroJacobianIndices()
/** GetSpatialJacobian recursive implementation. */
static void
GetSpatialJacobian(InternalFloatType * const sj,
const TScalar * const * const mu,
const OffsetValueType * const itkNotUsed(gridOffsetTable),
const double * const itkNotUsed(weights1D), // normal B-spline weights
const double * const itkNotUsed(derivativeWeights1D)) // 1st derivative of B-spline
{
for (unsigned int j = 0; j < OutputDimension; ++j)
{
sj[j] = *(mu[j]);
}
} // end GetSpatialJacobian()
/** GetSpatialHessian recursive implementation. */
static void
GetSpatialHessian(InternalFloatType * const sh,
const TScalar * const * const mu,
const OffsetValueType * const itkNotUsed(gridOffsetTable),
const double * const itkNotUsed(weights1D), // normal B-spline weights
const double * const itkNotUsed(derivativeWeights1D), // 1st derivative of B-spline
const double * const itkNotUsed(hessianWeights1D)) // 2nd derivative of B-spline
{
for (unsigned int j = 0; j < OutputDimension; ++j)
{
sh[j] = *(mu[j]);
}
} // end GetSpatialHessian()
/** GetJacobianOfSpatialJacobian recursive implementation. */
static void
GetJacobianOfSpatialJacobian(InternalFloatType *& jsj_out,
const double * const itkNotUsed(weights1D), // normal B-spline weights
const double * const itkNotUsed(derivativeWeights1D), // 1st derivative of B-spline
const double * const directionCosines,
const InternalFloatType * const jsj)
{
/** Copy the correct elements to the output.
* Note that the first element jsj[0] is the normal Jacobian. We ignore it for now.
* Also note that the received order is [dz, dy, dx] and that we return [dx, dy, dz].
* Returns full jsj
*/
for (unsigned int j = 0; j < OutputDimension; ++j)
{
jsj_out[j] = jsj[OutputDimension] * directionCosines[j];
for (unsigned int k = 1; k < OutputDimension; ++k)
{
jsj_out[k] += jsj[OutputDimension - k] * directionCosines[k * OutputDimension + j];
}
}
/** Mirror the results. */
unsigned int offset = 0;
for (unsigned int i = 0; i < OutputDimension; ++i)
{
offset = i * (OutputDimension * (BSplineNumberOfIndices * OutputDimension + 1));
for (unsigned int j = 0; j < OutputDimension; ++j)
{
jsj_out[j + offset] = jsj_out[j];
}
}
/** Jump to the next non-empty matrix, skipping the zero matrices. */
jsj_out += OutputDimension * OutputDimension;
} // end GetJacobianOfSpatialJacobian()
/** GetJacobianOfSpatialHessian recursive implementation. */
static void
GetJacobianOfSpatialHessian(InternalFloatType *& jsh_out,
const double * const itkNotUsed(weights1D), // normal B-spline weights
const double * const itkNotUsed(derivativeWeights1D), // 1st derivative of B-spline
const double * const itkNotUsed(hessianWeights1D), // 2nd derivative of B-spline
const double * const directionCosines,
const InternalFloatType * const jsh)
{
double jsh_tmp[OutputDimension * OutputDimension];
double matrixProduct[OutputDimension * OutputDimension];
/** Copy the correct elements to the intermediate matrix.
* Note that in contrast to the other function, here we create the full matrix.
*
* For dimensions 2 and 3 optimized code (loop unrolling) is provided. Smart compilers may
* not need that.
*/
if constexpr (OutputDimension == 3)
{
const double tmp[] = { jsh[9], jsh[8], jsh[7], jsh[8], jsh[5], jsh[4], jsh[7], jsh[4], jsh[2] };
FastBitwiseCopy(jsh_tmp, tmp);
}
else if constexpr (OutputDimension == 2)
{
const double tmp[] = { jsh[5], jsh[4], jsh[4], jsh[2] };
FastBitwiseCopy(jsh_tmp, tmp);
}
else // the general case
{
for (unsigned int j = 0; j < OutputDimension; ++j)
{
for (unsigned int i = 0; i <= j; ++i)
{
jsh_tmp[j * OutputDimension + i] =
jsh[(OutputDimension - j) + (OutputDimension - i) * (OutputDimension - i + 1) / 2];
if (i != j)
{
jsh_tmp[i * OutputDimension + j] = jsh_tmp[j * OutputDimension + i];
}
}
}
}
/** Pre-multiply directionCosines^t * H. */
for (unsigned int i = 0; i < OutputDimension; ++i) // row
{
for (unsigned int j = 0; j < OutputDimension; ++j) // column
{
double accum = directionCosines[i] * jsh_tmp[j];
for (unsigned int k = 1; k < OutputDimension; ++k)
{
accum += directionCosines[k * OutputDimension + i] * jsh_tmp[k * OutputDimension + j];
}
matrixProduct[i * OutputDimension + j] = accum;
}
}
/** Post-multiply matrixProduct * directionCosines. */
for (unsigned int i = 0; i < OutputDimension; ++i) // row
{
for (unsigned int j = 0; j < OutputDimension; ++j) // column
{
double accum = matrixProduct[i * OutputDimension] * directionCosines[j];
for (unsigned int k = 1; k < OutputDimension; ++k)
{
accum += matrixProduct[i * OutputDimension + k] * directionCosines[k * OutputDimension + j];
}
jsh_out[i * OutputDimension + j] = accum;
}
}
/** Mirror the results. */
unsigned long offset = 0;
for (unsigned int i = 0; i < OutputDimension; ++i)
{
offset = i * (OutputDimension * OutputDimension * (BSplineNumberOfIndices * OutputDimension + 1));
for (unsigned int j = 0; j < OutputDimension * OutputDimension; ++j)
{
jsh_out[j + offset] = jsh_out[j];
}
}
/** Jump to the next non-empty matrix, skipping the zero matrices. */
jsh_out += OutputDimension * OutputDimension * OutputDimension;
} // end GetJacobianOfSpatialHessian()
private:
template <typename T>
static void
FastBitwiseCopy(T & destination, const T & source)
{
std::memcpy(&destination, &source, sizeof(T));
}
template <typename T1, typename T2>
static void
FastBitwiseCopy(const T1 &, const T2 &)
{
assert(!"This FastBitwiseCopy overload should not be called!");
}
};
} // end namespace itk
#endif /* itkRecursiveBSplineTransformImplementation_h */
|