File: itkAdvancedLinearInterpolateImageFunction.hxx

package info (click to toggle)
elastix 5.2.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 42,480 kB
  • sloc: cpp: 68,403; lisp: 4,118; python: 1,013; xml: 182; sh: 177; makefile: 33
file content (240 lines) | stat: -rw-r--r-- 8,645 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
/*=========================================================================
 *
 *  Copyright UMC Utrecht and contributors
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *        http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkAdvancedLinearInterpolateImageFunction_hxx
#define itkAdvancedLinearInterpolateImageFunction_hxx

#include "itkAdvancedLinearInterpolateImageFunction.h"

#include <vnl/vnl_math.h>

namespace itk
{

/**
 * ***************** EvaluateDerivativeAtContinuousIndex ***********************
 */

// template< class TInputImage, class TCoordRep >
// typename AdvancedLinearInterpolateImageFunction< TInputImage, TCoordRep >
//::CovariantVectorType
// AdvancedLinearInterpolateImageFunction< TInputImage, TCoordRep >
//::EvaluateDerivativeAtContinuousIndex(
//  const ContinuousIndexType & x ) const
//{
//  /**
//   * Compute base index = closest index below point
//   * Compute distance from point to base index
//   */
//  IndexType baseIndex;
//  //double    distance[ ImageDimension ];
//  for ( dim = 0; dim < ImageDimension; dim++ )
//  {
//    baseIndex[ dim ] = Math::Floor< IndexValueType >( index[dim] );
//    //distance[  dim ] = index[ dim ] - static_cast< double >( baseIndex[dim] );
//  }
//
//  IndexType neighIndex = baseIndex;
//  IndexType upIndex = baseIndex;
//
//  CovariantVectorType derivative;
//  for ( unsigned int dim = 0; dim < ImageDimension; ++dim )
//  {
//    ++upIndex[ dim ];
//    derivative[ dim ] =
//      this->GetInputImage()->GetPixel( upIndex )
//      - this->GetInputImage()->GetPixel( baseIndex );
//  }
//
//} // end EvaluateDerivativeAtContinuousIndex()

/**
 * ***************** EvaluateValueAndDerivativeOptimized ***********************
 */

template <class TInputImage, class TCoordRep>
void
AdvancedLinearInterpolateImageFunction<TInputImage, TCoordRep>::EvaluateValueAndDerivativeOptimized(
  const Dispatch<2> &,
  const ContinuousIndexType & x,
  OutputType &                value,
  CovariantVectorType &       deriv) const
{
  // Get some handles
  const InputImageType *        inputImage = this->GetInputImage();
  const InputImageSpacingType & spacing = inputImage->GetSpacing();

  /** Create a possibly mirrored version of x. */
  ContinuousIndexType xm = x;
  double              deriv_sign[ImageDimension];
  for (unsigned int dim = 0; dim < ImageDimension; ++dim)
  {
    deriv_sign[dim] = 1.0 / spacing[dim];
    if (x[dim] < this->m_StartIndex[dim])
    {
      xm[dim] = 2.0 * this->m_StartIndex[dim] - x[dim];
      deriv_sign[dim] *= -1.0;
    }
    if (x[dim] > this->m_EndIndex[dim])
    {
      xm[dim] = 2.0 * this->m_EndIndex[dim] - x[dim];
      deriv_sign[dim] *= -1.0;
    }

    /** Separately deal with cases on the image edge. */
    if (Math::FloatAlmostEqual(xm[dim], static_cast<ContinuousIndexValueType>(this->m_EndIndex[dim])))
    {
      xm[dim] -= 0.000001;
    }
  }
  // if this is mirrored again outside the image domain, then too bad.

  /**
   * Compute base index = closest index below point
   * Compute distance from point to base index
   */
  IndexType baseIndex;
  double    dist[ImageDimension];
  double    dinv[ImageDimension];
  for (unsigned int dim = 0; dim < ImageDimension; ++dim)
  {
    baseIndex[dim] = Math::Floor<IndexValueType>(xm[dim]);

    dist[dim] = xm[dim] - static_cast<double>(baseIndex[dim]);
    dinv[dim] = 1.0 - dist[dim];
  }

  /** Get the 4 corner values. */
  const RealType val00 = inputImage->GetPixel(baseIndex);
  ++baseIndex[0];
  const RealType val10 = inputImage->GetPixel(baseIndex);
  --baseIndex[0];
  ++baseIndex[1];
  const RealType val01 = inputImage->GetPixel(baseIndex);
  ++baseIndex[0];
  const RealType val11 = inputImage->GetPixel(baseIndex);

  /** Interpolate to get the value. */
  value = static_cast<OutputType>(val00 * dinv[0] * dinv[1] + val10 * dist[0] * dinv[1] + val01 * dinv[0] * dist[1] +
                                  val11 * dist[0] * dist[1]);

  /** Interpolate to get the derivative. */
  deriv[0] = deriv_sign[0] * (dinv[1] * (val10 - val00) + dist[1] * (val11 - val01));
  deriv[1] = deriv_sign[1] * (dinv[0] * (val01 - val00) + dist[0] * (val11 - val10));

  /** Take direction cosines into account. */
  deriv = inputImage->TransformLocalVectorToPhysicalVector(deriv);

} // end EvaluateValueAndDerivativeOptimized()


/**
 * ***************** EvaluateValueAndDerivativeOptimized ***********************
 */

template <class TInputImage, class TCoordRep>
void
AdvancedLinearInterpolateImageFunction<TInputImage, TCoordRep>::EvaluateValueAndDerivativeOptimized(
  const Dispatch<3> &,
  const ContinuousIndexType & x,
  OutputType &                value,
  CovariantVectorType &       deriv) const
{
  // Get some handles
  const InputImageType *        inputImage = this->GetInputImage();
  const InputImageSpacingType & spacing = inputImage->GetSpacing();

  /** Create a possibly mirrored version of x. */
  ContinuousIndexType xm = x;
  double              deriv_sign[ImageDimension];
  for (unsigned int dim = 0; dim < ImageDimension; ++dim)
  {
    deriv_sign[dim] = 1.0 / spacing[dim];
    if (x[dim] < this->m_StartIndex[dim])
    {
      xm[dim] = 2.0 * this->m_StartIndex[dim] - x[dim];
      deriv_sign[dim] *= -1.0;
    }
    if (x[dim] > this->m_EndIndex[dim])
    {
      xm[dim] = 2.0 * this->m_EndIndex[dim] - x[dim];
      deriv_sign[dim] *= -1.0;
    }

    /** Separately deal with cases on the image edge. */
    if (Math::FloatAlmostEqual(xm[dim], static_cast<ContinuousIndexValueType>(this->m_EndIndex[dim])))
    {
      xm[dim] -= 0.000001;
    }
  }
  // if this is mirrored again outside the image domain, then too bad.

  /**
   * Compute base index = closest index below point
   * Compute distance from point to base index
   */
  IndexType baseIndex;
  double    dist[ImageDimension];
  double    dinv[ImageDimension];
  for (unsigned int dim = 0; dim < ImageDimension; ++dim)
  {
    baseIndex[dim] = Math::Floor<IndexValueType>(xm[dim]);

    dist[dim] = xm[dim] - static_cast<double>(baseIndex[dim]);
    dinv[dim] = 1.0 - dist[dim];
  }

  /** Get the 8 corner values. */
  const RealType val000 = inputImage->GetPixel(baseIndex);
  ++baseIndex[0];
  const RealType val100 = inputImage->GetPixel(baseIndex);
  ++baseIndex[1];
  const RealType val110 = inputImage->GetPixel(baseIndex);
  ++baseIndex[2];
  const RealType val111 = inputImage->GetPixel(baseIndex);
  --baseIndex[1];
  const RealType val101 = inputImage->GetPixel(baseIndex);
  --baseIndex[0];
  const RealType val001 = inputImage->GetPixel(baseIndex);
  ++baseIndex[1];
  const RealType val011 = inputImage->GetPixel(baseIndex);
  --baseIndex[2];
  const RealType val010 = inputImage->GetPixel(baseIndex);

  /** Interpolate to get the value. */
  value = static_cast<OutputType>(val000 * dinv[0] * dinv[1] * dinv[2] + val100 * dist[0] * dinv[1] * dinv[2] +
                                  val010 * dinv[0] * dist[1] * dinv[2] + val001 * dinv[0] * dinv[1] * dist[2] +
                                  val110 * dist[0] * dist[1] * dinv[2] + val011 * dinv[0] * dist[1] * dist[2] +
                                  val101 * dist[0] * dinv[1] * dist[2] + val111 * dist[0] * dist[1] * dist[2]);

  /** Interpolate to get the derivative. */
  deriv[0] = deriv_sign[0] * (dinv[1] * dinv[2] * (val100 - val000) + dist[1] * dinv[2] * (val110 - val010) +
                              dinv[1] * dist[2] * (val101 - val001) + dist[1] * dist[2] * (val111 - val011));
  deriv[1] = deriv_sign[1] * (dinv[0] * dinv[2] * (val010 - val000) + dist[0] * dinv[2] * (val110 - val100) +
                              dinv[0] * dist[2] * (val011 - val001) + dist[0] * dist[2] * (val111 - val101));
  deriv[2] = deriv_sign[2] * (dinv[0] * dinv[1] * (val001 - val000) + dist[0] * dinv[1] * (val101 - val100) +
                              dinv[0] * dist[1] * (val011 - val010) + dist[0] * dist[1] * (val111 - val110));

  /** Take direction cosines into account. */
  deriv = inputImage->TransformLocalVectorToPhysicalVector(deriv);

} // end EvaluateValueAndDerivativeOptimized()


} // end namespace itk

#endif