1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
|
/*=========================================================================
*
* Copyright UMC Utrecht and contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkComputeDisplacementDistribution_hxx
#define itkComputeDisplacementDistribution_hxx
#include "itkComputeDisplacementDistribution.h"
#include <string>
#include <vnl/vnl_math.h>
#include <vnl/vnl_fastops.h>
#include <vnl/vnl_diag_matrix.h>
#include "itkImageScanlineIterator.h"
#include "itkImageSliceIteratorWithIndex.h"
#include "itkCropImageFilter.h"
#include "itkMirrorPadImageFilter.h"
#include "itkZeroFluxNeumannPadImageFilter.h"
#include "itkSmoothingRecursiveGaussianImageFilter.h"
#include <cassert>
namespace itk
{
/**
* ************************* Constructor ************************
*/
template <class TFixedImage, class TTransform>
ComputeDisplacementDistribution<TFixedImage, TTransform>::ComputeDisplacementDistribution()
{
this->m_FixedImage = nullptr;
this->m_FixedImageMask = nullptr;
this->m_Transform = nullptr;
this->m_FixedImageMask = nullptr;
this->m_NumberOfJacobianMeasurements = 0;
this->m_SampleContainer = nullptr;
/** Threading related variables. */
this->m_UseMultiThread = true;
this->m_Threader = MultiThreaderBase::New();
/** Initialize the m_ThreaderParameters. */
this->m_ThreaderParameters.st_Self = this;
} // end Constructor
/**
* ************************* InitializeThreadingParameters ************************
*/
template <class TFixedImage, class TTransform>
void
ComputeDisplacementDistribution<TFixedImage, TTransform>::InitializeThreadingParameters()
{
/** Resize and initialize the threading related parameters.
* The SetSize() functions do not resize the data when this is not
* needed, which saves valuable re-allocation time.
*
* This function is only to be called at the start of each resolution.
* Re-initialization of the potentially large vectors is performed after
* each iteration, in the accumulate functions, in a multi-threaded fashion.
* This has performance benefits for larger vector sizes.
*/
const ThreadIdType numberOfThreads = this->m_Threader->GetNumberOfWorkUnits();
// For each thread, assign a struct of zero-initialized values.
m_ComputePerThreadVariables.assign(numberOfThreads, AlignedComputePerThreadStruct());
} // end InitializeThreadingParameters()
/**
* ************************* ComputeSingleThreaded ************************
*/
template <class TFixedImage, class TTransform>
void
ComputeDisplacementDistribution<TFixedImage, TTransform>::ComputeSingleThreaded(const ParametersType & mu,
double & jacg,
double & maxJJ,
std::string methods)
{
/** This function computes four terms needed for the automatic parameter
* estimation using voxel displacement distribution estimation method.
* The equation number refers to the SPIE paper.
* Term 1: jacg = mean( J_j * g ) + var( J_j * g ).
*/
/** Initialize. */
maxJJ = jacg = 0.0;
/** Get samples. */
ImageSampleContainerPointer sampleContainer; // default-constructed (null)
this->SampleFixedImageForJacobianTerms(sampleContainer);
const SizeValueType nrofsamples = sampleContainer->Size();
/** Get the number of parameters. */
const unsigned int numberOfParameters = static_cast<unsigned int>(this->m_Transform->GetNumberOfParameters());
/** Get scales vector */
const ScalesType & scales = this->GetScales();
this->m_ScaledCostFunction->SetScales(scales);
/** Get the exact gradient. */
this->m_ExactGradient.set_size(numberOfParameters);
this->m_ExactGradient.Fill(0.0);
this->GetScaledDerivative(mu, this->m_ExactGradient);
/** Get transform and set current position. */
const unsigned int outdim = this->m_Transform->GetOutputSpaceDimension();
unsigned int samplenr = 0;
/** Variables for nonzerojacobian indices and the Jacobian. */
const SizeValueType sizejacind = this->m_Transform->GetNumberOfNonZeroJacobianIndices();
JacobianType jacj(outdim, sizejacind, 0.0);
NonZeroJacobianIndicesType jacind(sizejacind);
jacind[0] = 0;
if (sizejacind > 1)
{
jacind[1] = 0;
}
/**
* Compute maxJJ and jac*gradient
*/
DerivativeType Jgg(outdim, 0.0);
std::vector<double> JGG_k;
JGG_k.reserve(nrofsamples);
double globalDeformation = 0.0;
const double sqrt2 = std::sqrt(static_cast<double>(2.0));
JacobianType jacjjacj(outdim, outdim);
samplenr = 0;
for (const auto & sample : *sampleContainer)
{
/** Read fixed coordinates and get Jacobian. */
const FixedImagePointType & point = sample.m_ImageCoordinates;
this->m_Transform->GetJacobian(point, jacj, jacind);
/** Apply scales, if necessary. */
if (this->GetUseScales())
{
for (unsigned int pi = 0; pi < sizejacind; ++pi)
{
const unsigned int p = jacind[pi];
jacj.scale_column(pi, 1.0 / scales[p]);
}
}
/** Compute 1st part of JJ: ||J_j||_F^2. */
double JJ_j = vnl_math::sqr(jacj.frobenius_norm());
/** Compute 2nd part of JJ: 2\sqrt{2} || J_j J_j^T ||_F. */
vnl_fastops::ABt(jacjjacj, jacj, jacj);
JJ_j += 2.0 * sqrt2 * jacjjacj.frobenius_norm();
/** Max_j [JJ_j]. */
maxJJ = std::max(maxJJ, JJ_j);
/** Compute the matrix of jac*gradient */
for (unsigned int i = 0; i < outdim; ++i)
{
double temp = 0.0;
for (unsigned int j = 0; j < sizejacind; ++j)
{
int pj = jacind[j];
temp += jacj(i, j) * this->m_ExactGradient(pj);
}
Jgg(i) = temp;
}
globalDeformation += Jgg.magnitude();
JGG_k.push_back(Jgg.magnitude());
++samplenr;
} // end loop over sample container
if (methods == "95percentile")
{
/** Compute the 95% percentile of the distribution of JGG_k */
unsigned int d = static_cast<unsigned int>(nrofsamples * 0.95);
std::sort(JGG_k.begin(), JGG_k.end());
jacg = (JGG_k[d - 1] + JGG_k[d] + JGG_k[d + 1]) / 3.0;
}
else if (methods == "2sigma")
{
/** Compute the sigma of the distribution of JGG_k. */
double sigma = 0.0;
double mean_JGG = globalDeformation / samplenr;
for (unsigned int i = 0; i < nrofsamples; ++i)
{
sigma += vnl_math::sqr(JGG_k[i] - mean_JGG);
}
sigma /= (nrofsamples - 1); // unbiased estimation
jacg = mean_JGG + 2.0 * std::sqrt(sigma);
}
} // end ComputeSingleThreaded()
/**
* ************************* Compute ************************
*/
template <class TFixedImage, class TTransform>
void
ComputeDisplacementDistribution<TFixedImage, TTransform>::Compute(const ParametersType & mu,
double & jacg,
double & maxJJ,
std::string methods)
{
/** Option for now to still use the single threaded code. */
if (!this->m_UseMultiThread)
{
return this->ComputeSingleThreaded(mu, jacg, maxJJ, methods);
}
// The multi-threaded route only supports methods == 2sigma for now
/** Initialize multi-threading. */
this->InitializeThreadingParameters();
/** Tackle stuff needed before multi-threading. */
this->BeforeThreadedCompute(mu);
/** Launch multi-threaded computation. */
this->LaunchComputeThreaderCallback();
/** Gather the jacg, maxJJ values from all threads. */
this->AfterThreadedCompute(jacg, maxJJ);
} // end Compute()
/**
* *********************** BeforeThreadedCompute***************
*/
template <class TFixedImage, class TTransform>
void
ComputeDisplacementDistribution<TFixedImage, TTransform>::BeforeThreadedCompute(const ParametersType & mu)
{
/** Get the number of parameters. */
this->m_NumberOfParameters =
static_cast<unsigned int>(this->m_Transform->GetNumberOfParameters()); // why is this parameter needed?
/** Get scales vector */
const ScalesType & scales = this->GetScales();
this->m_ScaledCostFunction->SetScales(scales);
/** Get the exact gradient. */
this->m_ExactGradient.set_size(this->m_NumberOfParameters);
this->m_ExactGradient.Fill(0.0);
this->GetScaledDerivative(mu, this->m_ExactGradient);
/** Get samples. */
this->SampleFixedImageForJacobianTerms(this->m_SampleContainer);
} // end BeforeThreadedCompute()
/**
* *********************** LaunchComputeThreaderCallback***************
*/
template <class TFixedImage, class TTransform>
void
ComputeDisplacementDistribution<TFixedImage, TTransform>::LaunchComputeThreaderCallback() const
{
/** Setup threader and launch. */
this->m_Threader->SetSingleMethodAndExecute(this->ComputeThreaderCallback, &m_ThreaderParameters);
} // end LaunchComputeThreaderCallback()
/**
* ************ ComputeThreaderCallback ****************************
*/
template <class TFixedImage, class TTransform>
ITK_THREAD_RETURN_FUNCTION_CALL_CONVENTION
ComputeDisplacementDistribution<TFixedImage, TTransform>::ComputeThreaderCallback(void * arg)
{
/** Get the current thread id and user data. */
assert(arg);
const auto & infoStruct = *static_cast<ThreadInfoType *>(arg);
ThreadIdType threadID = infoStruct.WorkUnitID;
assert(infoStruct.UserData);
const auto & userData = *static_cast<MultiThreaderParameterType *>(infoStruct.UserData);
/** Call the real implementation. */
userData.st_Self->ThreadedCompute(threadID);
return ITK_THREAD_RETURN_DEFAULT_VALUE;
} // end ComputeThreaderCallback()
/**
* ************************* ThreadedCompute ************************
*/
template <class TFixedImage, class TTransform>
void
ComputeDisplacementDistribution<TFixedImage, TTransform>::ThreadedCompute(ThreadIdType threadId)
{
/** Get sample container size, number of threads, and output space dimension. */
const SizeValueType sampleContainerSize = this->m_SampleContainer->Size();
const ThreadIdType numberOfThreads = this->m_Threader->GetNumberOfWorkUnits();
const unsigned int outdim = this->m_Transform->GetOutputSpaceDimension();
/** Get a handle to the scales vector */
const ScalesType & scales = this->GetScales();
/** Get the samples for this thread. */
const unsigned long nrOfSamplesPerThreads = static_cast<unsigned long>(
std::ceil(static_cast<double>(sampleContainerSize) / static_cast<double>(numberOfThreads)));
const auto pos_begin = std::min<size_t>(nrOfSamplesPerThreads * threadId, sampleContainerSize);
const auto pos_end = std::min<size_t>(nrOfSamplesPerThreads * (threadId + 1), sampleContainerSize);
/** Variables for nonzerojacobian indices and the Jacobian. */
const SizeValueType sizejacind = this->m_Transform->GetNumberOfNonZeroJacobianIndices();
JacobianType jacj(outdim, sizejacind, 0.0);
NonZeroJacobianIndicesType jacind(sizejacind);
jacind[0] = 0;
if (sizejacind > 1)
{
jacind[1] = 0;
}
/** Temporaries. */
// std::vector< double > JGG_k; not here so only mean + 2 sigma is supported
DerivativeType Jgg(outdim, 0.0);
const double sqrt2 = std::sqrt(static_cast<double>(2.0));
JacobianType jacjjacj(outdim, outdim);
double maxJJ = 0.0;
double jggMagnitude = 0.0;
double displacement = 0.0;
double displacementSquared = 0.0;
unsigned long numberOfPixelsCounted = 0;
/** Create iterator over the sample container. */
const auto beginOfSampleContainer = this->m_SampleContainer->cbegin();
const auto threader_fbegin = beginOfSampleContainer + pos_begin;
const auto threader_fend = beginOfSampleContainer + pos_end;
/** Loop over the fixed image to calculate the mean squares. */
for (auto threader_fiter = threader_fbegin; threader_fiter != threader_fend; ++threader_fiter)
{
/** Read fixed coordinates and get Jacobian. */
const FixedImagePointType & point = threader_fiter->m_ImageCoordinates;
this->m_Transform->GetJacobian(point, jacj, jacind);
/** Apply scales, if necessary. */
if (this->GetUseScales())
{
for (unsigned int pi = 0; pi < sizejacind; ++pi)
{
const unsigned int p = jacind[pi];
jacj.scale_column(pi, 1.0 / scales[p]);
}
}
/** Compute 1st part of JJ: ||J_j||_F^2. */
double JJ_j = vnl_math::sqr(jacj.frobenius_norm());
/** Compute 2nd part of JJ: 2\sqrt{2} || J_j J_j^T ||_F. */
vnl_fastops::ABt(jacjjacj, jacj, jacj); // is this thread-safe?
JJ_j += 2.0 * sqrt2 * jacjjacj.frobenius_norm();
/** Max_j [JJ_j]. */
maxJJ = std::max(maxJJ, JJ_j);
/** Compute the displacement jac * gradient. */
for (unsigned int i = 0; i < outdim; ++i)
{
double temp = 0.0;
for (unsigned int j = 0; j < sizejacind; ++j)
{
int pj = jacind[j];
temp += jacj(i, j) * this->m_ExactGradient(pj);
}
Jgg(i) = temp;
}
/** Sum the Jgg displacement for later use. */
jggMagnitude = Jgg.magnitude();
displacement += jggMagnitude;
displacementSquared += vnl_math::sqr(jggMagnitude);
++numberOfPixelsCounted;
}
/** Update the thread struct once. */
AlignedComputePerThreadStruct computePerThreadStruct;
computePerThreadStruct.st_MaxJJ = maxJJ;
computePerThreadStruct.st_Displacement = displacement;
computePerThreadStruct.st_DisplacementSquared = displacementSquared;
computePerThreadStruct.st_NumberOfPixelsCounted = numberOfPixelsCounted;
m_ComputePerThreadVariables[threadId] = computePerThreadStruct;
} // end ThreadedCompute()
/**
* *********************** AfterThreadedCompute***************
*/
template <class TFixedImage, class TTransform>
void
ComputeDisplacementDistribution<TFixedImage, TTransform>::AfterThreadedCompute(double & jacg, double & maxJJ)
{
/** Reset all variables. */
maxJJ = 0.0;
double displacement = 0.0;
double displacementSquared = 0.0;
this->m_NumberOfPixelsCounted = 0.0;
/** Accumulate thread results. */
for (const auto & computePerThreadStruct : m_ComputePerThreadVariables)
{
maxJJ = std::max(maxJJ, computePerThreadStruct.st_MaxJJ);
displacement += computePerThreadStruct.st_Displacement;
displacementSquared += computePerThreadStruct.st_DisplacementSquared;
this->m_NumberOfPixelsCounted += computePerThreadStruct.st_NumberOfPixelsCounted;
}
// Reset all variables for the next resolution.
std::fill_n(m_ComputePerThreadVariables.begin(), m_ComputePerThreadVariables.size(), AlignedComputePerThreadStruct());
/** Compute the sigma of the distribution of the displacements. */
const double meanDisplacement = displacement / this->m_NumberOfPixelsCounted;
const double sigma = displacementSquared / this->m_NumberOfPixelsCounted - vnl_math::sqr(meanDisplacement);
jacg = meanDisplacement + 2.0 * std::sqrt(sigma);
} // end AfterThreadedCompute()
/**
* ************************* ComputeUsingSearchDirection ************************
*/
template <class TFixedImage, class TTransform>
void
ComputeDisplacementDistribution<TFixedImage, TTransform>::ComputeUsingSearchDirection(const ParametersType & mu,
double & jacg,
double & maxJJ,
std::string methods)
{
/** This function computes four terms needed for the automatic parameter
* estimation using voxel displacement distribution estimation method.
* The equation number refers to the SPIE paper.
* Term 1: jacg = mean( J_j * g ) + var( J_j * g ).
*/
/** Initialize. */
maxJJ = jacg = 0.0;
/** Get samples. */
ImageSampleContainerPointer sampleContainer; // default-constructed (null)
this->SampleFixedImageForJacobianTerms(sampleContainer);
const SizeValueType nrofsamples = sampleContainer->Size();
/** Get the number of parameters. */
const unsigned int numberOfParameters = static_cast<unsigned int>(this->m_Transform->GetNumberOfParameters());
/** Get scales vector */
const ScalesType & scales = this->GetScales();
this->m_ScaledCostFunction->SetScales(scales);
/** Get the exact gradient. */
DerivativeType exactgradient(numberOfParameters);
exactgradient = mu;
/** Get transform and set current position. */
typename TransformType::Pointer transform = this->m_Transform;
const unsigned int outdim = this->m_Transform->GetOutputSpaceDimension();
unsigned int samplenr = 0;
/** Variables for nonzerojacobian indices and the Jacobian. */
const SizeValueType sizejacind = this->m_Transform->GetNumberOfNonZeroJacobianIndices();
JacobianType jacj(outdim, sizejacind, 0.0);
NonZeroJacobianIndicesType jacind(sizejacind);
jacind[0] = 0;
if (sizejacind > 1)
{
jacind[1] = 0;
}
/**
* Compute maxJJ and jac*gradient
*/
DerivativeType Jgg(outdim, 0.0);
std::vector<double> JGG_k;
JGG_k.reserve(nrofsamples);
double globalDeformation = 0.0;
samplenr = 0;
for (const auto & sample : *sampleContainer)
{
/** Read fixed coordinates and get Jacobian. */
const FixedImagePointType & point = sample.m_ImageCoordinates;
this->m_Transform->GetJacobian(point, jacj, jacind);
/** Apply scales, if necessary. */
if (this->GetUseScales())
{
for (unsigned int pi = 0; pi < sizejacind; ++pi)
{
const unsigned int p = jacind[pi];
jacj.scale_column(pi, 1.0 / scales[p]);
}
}
/** Compute the matrix of jac*gradient */
for (unsigned int i = 0; i < outdim; ++i)
{
double temp = 0.0;
for (unsigned int j = 0; j < sizejacind; ++j)
{
int pj = jacind[j];
temp += jacj(i, j) * exactgradient(pj);
}
Jgg(i) = temp;
}
globalDeformation += Jgg.magnitude();
JGG_k.push_back(Jgg.magnitude());
++samplenr;
} // end loop over sample container
if (methods == "95percentile")
{
/** Compute the 95% percentile of the distribution of JGG_k */
unsigned int d = static_cast<unsigned int>(nrofsamples * 0.95);
std::sort(JGG_k.begin(), JGG_k.end());
jacg = (JGG_k[d - 1] + JGG_k[d] + JGG_k[d + 1]) / 3.0;
}
else if (methods == "2sigma")
{
/** Compute the sigma of the distribution of JGG_k. */
double sigma = 0.0;
double mean_JGG = globalDeformation / samplenr;
for (unsigned int i = 0; i < nrofsamples; ++i)
{
sigma += vnl_math::sqr(JGG_k[i] - mean_JGG);
}
sigma /= (nrofsamples - 1); // unbiased estimation
jacg = mean_JGG + 2.0 * std::sqrt(sigma);
}
} // end ComputeUsingSearchDirection()
/**
* ************************* SampleFixedImageForJacobianTerms ************************
*/
template <class TFixedImage, class TTransform>
void
ComputeDisplacementDistribution<TFixedImage, TTransform>::SampleFixedImageForJacobianTerms(
ImageSampleContainerPointer & sampleContainer)
{
/** Set up grid sampler. */
ImageGridSamplerPointer sampler = ImageGridSamplerType::New();
// ImageFullSamplerPointer sampler = ImageFullSamplerType::New();
sampler->SetInput(this->m_FixedImage);
sampler->SetInputImageRegion(this->GetFixedImageRegion());
sampler->SetMask(this->m_FixedImageMask);
/** Determine grid spacing of sampler such that the desired
* NumberOfJacobianMeasurements is achieved approximately.
* Note that the actually obtained number of samples may be lower, due to masks.
* This is taken into account at the end of this function.
*/
SizeValueType nrofsamples = this->m_NumberOfJacobianMeasurements;
sampler->SetNumberOfSamples(nrofsamples);
/** Get samples and check the actually obtained number of samples. */
sampler->Update();
sampleContainer = sampler->GetOutput();
nrofsamples = sampleContainer->Size();
if (nrofsamples == 0)
{
itkExceptionMacro("No valid voxels (0/" << this->m_NumberOfJacobianMeasurements
<< ") found to estimate the AdaptiveStochasticGradientDescent parameters.");
}
} // end SampleFixedImageForJacobianTerms()
} // end namespace itk
#endif // end #ifndef itkComputeDisplacementDistribution_hxx
|