File: itkComputeDisplacementDistribution.hxx

package info (click to toggle)
elastix 5.2.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 42,480 kB
  • sloc: cpp: 68,403; lisp: 4,118; python: 1,013; xml: 182; sh: 177; makefile: 33
file content (616 lines) | stat: -rw-r--r-- 21,131 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
/*=========================================================================
 *
 *  Copyright UMC Utrecht and contributors
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *        http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkComputeDisplacementDistribution_hxx
#define itkComputeDisplacementDistribution_hxx

#include "itkComputeDisplacementDistribution.h"

#include <string>
#include <vnl/vnl_math.h>
#include <vnl/vnl_fastops.h>
#include <vnl/vnl_diag_matrix.h>

#include "itkImageScanlineIterator.h"
#include "itkImageSliceIteratorWithIndex.h"
#include "itkCropImageFilter.h"
#include "itkMirrorPadImageFilter.h"
#include "itkZeroFluxNeumannPadImageFilter.h"
#include "itkSmoothingRecursiveGaussianImageFilter.h"

#include <cassert>

namespace itk
{

/**
 * ************************* Constructor ************************
 */

template <class TFixedImage, class TTransform>
ComputeDisplacementDistribution<TFixedImage, TTransform>::ComputeDisplacementDistribution()
{
  this->m_FixedImage = nullptr;
  this->m_FixedImageMask = nullptr;
  this->m_Transform = nullptr;
  this->m_FixedImageMask = nullptr;
  this->m_NumberOfJacobianMeasurements = 0;
  this->m_SampleContainer = nullptr;

  /** Threading related variables. */
  this->m_UseMultiThread = true;
  this->m_Threader = MultiThreaderBase::New();

  /** Initialize the m_ThreaderParameters. */
  this->m_ThreaderParameters.st_Self = this;

} // end Constructor


/**
 * ************************* InitializeThreadingParameters ************************
 */

template <class TFixedImage, class TTransform>
void
ComputeDisplacementDistribution<TFixedImage, TTransform>::InitializeThreadingParameters()
{
  /** Resize and initialize the threading related parameters.
   * The SetSize() functions do not resize the data when this is not
   * needed, which saves valuable re-allocation time.
   *
   * This function is only to be called at the start of each resolution.
   * Re-initialization of the potentially large vectors is performed after
   * each iteration, in the accumulate functions, in a multi-threaded fashion.
   * This has performance benefits for larger vector sizes.
   */
  const ThreadIdType numberOfThreads = this->m_Threader->GetNumberOfWorkUnits();

  // For each thread, assign a struct of zero-initialized values.
  m_ComputePerThreadVariables.assign(numberOfThreads, AlignedComputePerThreadStruct());

} // end InitializeThreadingParameters()


/**
 * ************************* ComputeSingleThreaded ************************
 */

template <class TFixedImage, class TTransform>
void
ComputeDisplacementDistribution<TFixedImage, TTransform>::ComputeSingleThreaded(const ParametersType & mu,
                                                                                double &               jacg,
                                                                                double &               maxJJ,
                                                                                std::string            methods)
{
  /** This function computes four terms needed for the automatic parameter
   * estimation using voxel displacement distribution estimation method.
   * The equation number refers to the SPIE paper.
   * Term 1: jacg = mean( J_j * g ) + var( J_j * g ).
   */

  /** Initialize. */
  maxJJ = jacg = 0.0;

  /** Get samples. */
  ImageSampleContainerPointer sampleContainer; // default-constructed (null)
  this->SampleFixedImageForJacobianTerms(sampleContainer);
  const SizeValueType nrofsamples = sampleContainer->Size();

  /** Get the number of parameters. */
  const unsigned int numberOfParameters = static_cast<unsigned int>(this->m_Transform->GetNumberOfParameters());

  /** Get scales vector */
  const ScalesType & scales = this->GetScales();
  this->m_ScaledCostFunction->SetScales(scales);

  /** Get the exact gradient. */
  this->m_ExactGradient.set_size(numberOfParameters);
  this->m_ExactGradient.Fill(0.0);
  this->GetScaledDerivative(mu, this->m_ExactGradient);

  /** Get transform and set current position. */
  const unsigned int outdim = this->m_Transform->GetOutputSpaceDimension();

  unsigned int samplenr = 0;

  /** Variables for nonzerojacobian indices and the Jacobian. */
  const SizeValueType        sizejacind = this->m_Transform->GetNumberOfNonZeroJacobianIndices();
  JacobianType               jacj(outdim, sizejacind, 0.0);
  NonZeroJacobianIndicesType jacind(sizejacind);
  jacind[0] = 0;
  if (sizejacind > 1)
  {
    jacind[1] = 0;
  }

  /**
   * Compute maxJJ and jac*gradient
   */
  DerivativeType Jgg(outdim, 0.0);

  std::vector<double> JGG_k;
  JGG_k.reserve(nrofsamples);

  double       globalDeformation = 0.0;
  const double sqrt2 = std::sqrt(static_cast<double>(2.0));
  JacobianType jacjjacj(outdim, outdim);

  samplenr = 0;
  for (const auto & sample : *sampleContainer)
  {
    /** Read fixed coordinates and get Jacobian. */
    const FixedImagePointType & point = sample.m_ImageCoordinates;
    this->m_Transform->GetJacobian(point, jacj, jacind);

    /** Apply scales, if necessary. */
    if (this->GetUseScales())
    {
      for (unsigned int pi = 0; pi < sizejacind; ++pi)
      {
        const unsigned int p = jacind[pi];
        jacj.scale_column(pi, 1.0 / scales[p]);
      }
    }

    /** Compute 1st part of JJ: ||J_j||_F^2. */
    double JJ_j = vnl_math::sqr(jacj.frobenius_norm());

    /** Compute 2nd part of JJ: 2\sqrt{2} || J_j J_j^T ||_F. */
    vnl_fastops::ABt(jacjjacj, jacj, jacj);
    JJ_j += 2.0 * sqrt2 * jacjjacj.frobenius_norm();

    /** Max_j [JJ_j]. */
    maxJJ = std::max(maxJJ, JJ_j);

    /** Compute the matrix of jac*gradient */
    for (unsigned int i = 0; i < outdim; ++i)
    {
      double temp = 0.0;
      for (unsigned int j = 0; j < sizejacind; ++j)
      {
        int pj = jacind[j];
        temp += jacj(i, j) * this->m_ExactGradient(pj);
      }
      Jgg(i) = temp;
    }

    globalDeformation += Jgg.magnitude();
    JGG_k.push_back(Jgg.magnitude());
    ++samplenr;

  } // end loop over sample container

  if (methods == "95percentile")
  {
    /** Compute the 95% percentile of the distribution of JGG_k */
    unsigned int d = static_cast<unsigned int>(nrofsamples * 0.95);
    std::sort(JGG_k.begin(), JGG_k.end());
    jacg = (JGG_k[d - 1] + JGG_k[d] + JGG_k[d + 1]) / 3.0;
  }
  else if (methods == "2sigma")
  {
    /** Compute the sigma of the distribution of JGG_k. */
    double sigma = 0.0;
    double mean_JGG = globalDeformation / samplenr;
    for (unsigned int i = 0; i < nrofsamples; ++i)
    {
      sigma += vnl_math::sqr(JGG_k[i] - mean_JGG);
    }
    sigma /= (nrofsamples - 1); // unbiased estimation
    jacg = mean_JGG + 2.0 * std::sqrt(sigma);
  }

} // end ComputeSingleThreaded()


/**
 * ************************* Compute ************************
 */

template <class TFixedImage, class TTransform>
void
ComputeDisplacementDistribution<TFixedImage, TTransform>::Compute(const ParametersType & mu,
                                                                  double &               jacg,
                                                                  double &               maxJJ,
                                                                  std::string            methods)
{
  /** Option for now to still use the single threaded code. */
  if (!this->m_UseMultiThread)
  {
    return this->ComputeSingleThreaded(mu, jacg, maxJJ, methods);
  }
  // The multi-threaded route only supports methods == 2sigma for now

  /** Initialize multi-threading. */
  this->InitializeThreadingParameters();

  /** Tackle stuff needed before multi-threading. */
  this->BeforeThreadedCompute(mu);

  /** Launch multi-threaded computation. */
  this->LaunchComputeThreaderCallback();

  /** Gather the jacg, maxJJ values from all threads. */
  this->AfterThreadedCompute(jacg, maxJJ);

} // end Compute()


/**
 * *********************** BeforeThreadedCompute***************
 */

template <class TFixedImage, class TTransform>
void
ComputeDisplacementDistribution<TFixedImage, TTransform>::BeforeThreadedCompute(const ParametersType & mu)
{
  /** Get the number of parameters. */
  this->m_NumberOfParameters =
    static_cast<unsigned int>(this->m_Transform->GetNumberOfParameters()); // why is this parameter needed?

  /** Get scales vector */
  const ScalesType & scales = this->GetScales();
  this->m_ScaledCostFunction->SetScales(scales);

  /** Get the exact gradient. */
  this->m_ExactGradient.set_size(this->m_NumberOfParameters);
  this->m_ExactGradient.Fill(0.0);
  this->GetScaledDerivative(mu, this->m_ExactGradient);

  /** Get samples. */
  this->SampleFixedImageForJacobianTerms(this->m_SampleContainer);

} // end BeforeThreadedCompute()


/**
 * *********************** LaunchComputeThreaderCallback***************
 */

template <class TFixedImage, class TTransform>
void
ComputeDisplacementDistribution<TFixedImage, TTransform>::LaunchComputeThreaderCallback() const
{
  /** Setup threader and launch. */
  this->m_Threader->SetSingleMethodAndExecute(this->ComputeThreaderCallback, &m_ThreaderParameters);

} // end LaunchComputeThreaderCallback()


/**
 * ************ ComputeThreaderCallback ****************************
 */

template <class TFixedImage, class TTransform>
ITK_THREAD_RETURN_FUNCTION_CALL_CONVENTION
ComputeDisplacementDistribution<TFixedImage, TTransform>::ComputeThreaderCallback(void * arg)
{
  /** Get the current thread id and user data. */
  assert(arg);
  const auto & infoStruct = *static_cast<ThreadInfoType *>(arg);
  ThreadIdType threadID = infoStruct.WorkUnitID;

  assert(infoStruct.UserData);
  const auto & userData = *static_cast<MultiThreaderParameterType *>(infoStruct.UserData);

  /** Call the real implementation. */
  userData.st_Self->ThreadedCompute(threadID);

  return ITK_THREAD_RETURN_DEFAULT_VALUE;

} // end ComputeThreaderCallback()


/**
 * ************************* ThreadedCompute ************************
 */

template <class TFixedImage, class TTransform>
void
ComputeDisplacementDistribution<TFixedImage, TTransform>::ThreadedCompute(ThreadIdType threadId)
{
  /** Get sample container size, number of threads, and output space dimension. */
  const SizeValueType sampleContainerSize = this->m_SampleContainer->Size();
  const ThreadIdType  numberOfThreads = this->m_Threader->GetNumberOfWorkUnits();
  const unsigned int  outdim = this->m_Transform->GetOutputSpaceDimension();

  /** Get a handle to the scales vector */
  const ScalesType & scales = this->GetScales();

  /** Get the samples for this thread. */
  const unsigned long nrOfSamplesPerThreads = static_cast<unsigned long>(
    std::ceil(static_cast<double>(sampleContainerSize) / static_cast<double>(numberOfThreads)));

  const auto pos_begin = std::min<size_t>(nrOfSamplesPerThreads * threadId, sampleContainerSize);
  const auto pos_end = std::min<size_t>(nrOfSamplesPerThreads * (threadId + 1), sampleContainerSize);

  /** Variables for nonzerojacobian indices and the Jacobian. */
  const SizeValueType        sizejacind = this->m_Transform->GetNumberOfNonZeroJacobianIndices();
  JacobianType               jacj(outdim, sizejacind, 0.0);
  NonZeroJacobianIndicesType jacind(sizejacind);
  jacind[0] = 0;
  if (sizejacind > 1)
  {
    jacind[1] = 0;
  }

  /** Temporaries. */
  // std::vector< double > JGG_k; not here so only mean + 2 sigma is supported
  DerivativeType Jgg(outdim, 0.0);
  const double   sqrt2 = std::sqrt(static_cast<double>(2.0));
  JacobianType   jacjjacj(outdim, outdim);
  double         maxJJ = 0.0;
  double         jggMagnitude = 0.0;
  double         displacement = 0.0;
  double         displacementSquared = 0.0;
  unsigned long  numberOfPixelsCounted = 0;

  /** Create iterator over the sample container. */
  const auto beginOfSampleContainer = this->m_SampleContainer->cbegin();
  const auto threader_fbegin = beginOfSampleContainer + pos_begin;
  const auto threader_fend = beginOfSampleContainer + pos_end;

  /** Loop over the fixed image to calculate the mean squares. */
  for (auto threader_fiter = threader_fbegin; threader_fiter != threader_fend; ++threader_fiter)
  {
    /** Read fixed coordinates and get Jacobian. */
    const FixedImagePointType & point = threader_fiter->m_ImageCoordinates;
    this->m_Transform->GetJacobian(point, jacj, jacind);

    /** Apply scales, if necessary. */
    if (this->GetUseScales())
    {
      for (unsigned int pi = 0; pi < sizejacind; ++pi)
      {
        const unsigned int p = jacind[pi];
        jacj.scale_column(pi, 1.0 / scales[p]);
      }
    }

    /** Compute 1st part of JJ: ||J_j||_F^2. */
    double JJ_j = vnl_math::sqr(jacj.frobenius_norm());

    /** Compute 2nd part of JJ: 2\sqrt{2} || J_j J_j^T ||_F. */
    vnl_fastops::ABt(jacjjacj, jacj, jacj); // is this thread-safe?
    JJ_j += 2.0 * sqrt2 * jacjjacj.frobenius_norm();

    /** Max_j [JJ_j]. */
    maxJJ = std::max(maxJJ, JJ_j);

    /** Compute the displacement  jac * gradient. */
    for (unsigned int i = 0; i < outdim; ++i)
    {
      double temp = 0.0;
      for (unsigned int j = 0; j < sizejacind; ++j)
      {
        int pj = jacind[j];
        temp += jacj(i, j) * this->m_ExactGradient(pj);
      }
      Jgg(i) = temp;
    }

    /** Sum the Jgg displacement for later use. */
    jggMagnitude = Jgg.magnitude();
    displacement += jggMagnitude;
    displacementSquared += vnl_math::sqr(jggMagnitude);
    ++numberOfPixelsCounted;
  }

  /** Update the thread struct once. */
  AlignedComputePerThreadStruct computePerThreadStruct;
  computePerThreadStruct.st_MaxJJ = maxJJ;
  computePerThreadStruct.st_Displacement = displacement;
  computePerThreadStruct.st_DisplacementSquared = displacementSquared;
  computePerThreadStruct.st_NumberOfPixelsCounted = numberOfPixelsCounted;
  m_ComputePerThreadVariables[threadId] = computePerThreadStruct;
} // end ThreadedCompute()


/**
 * *********************** AfterThreadedCompute***************
 */

template <class TFixedImage, class TTransform>
void
ComputeDisplacementDistribution<TFixedImage, TTransform>::AfterThreadedCompute(double & jacg, double & maxJJ)
{
  /** Reset all variables. */
  maxJJ = 0.0;
  double displacement = 0.0;
  double displacementSquared = 0.0;
  this->m_NumberOfPixelsCounted = 0.0;

  /** Accumulate thread results. */
  for (const auto & computePerThreadStruct : m_ComputePerThreadVariables)
  {
    maxJJ = std::max(maxJJ, computePerThreadStruct.st_MaxJJ);
    displacement += computePerThreadStruct.st_Displacement;
    displacementSquared += computePerThreadStruct.st_DisplacementSquared;
    this->m_NumberOfPixelsCounted += computePerThreadStruct.st_NumberOfPixelsCounted;
  }
  // Reset all variables for the next resolution.
  std::fill_n(m_ComputePerThreadVariables.begin(), m_ComputePerThreadVariables.size(), AlignedComputePerThreadStruct());

  /** Compute the sigma of the distribution of the displacements. */
  const double meanDisplacement = displacement / this->m_NumberOfPixelsCounted;
  const double sigma = displacementSquared / this->m_NumberOfPixelsCounted - vnl_math::sqr(meanDisplacement);

  jacg = meanDisplacement + 2.0 * std::sqrt(sigma);

} // end AfterThreadedCompute()


/**
 * ************************* ComputeUsingSearchDirection ************************
 */

template <class TFixedImage, class TTransform>
void
ComputeDisplacementDistribution<TFixedImage, TTransform>::ComputeUsingSearchDirection(const ParametersType & mu,
                                                                                      double &               jacg,
                                                                                      double &               maxJJ,
                                                                                      std::string            methods)
{
  /** This function computes four terms needed for the automatic parameter
   * estimation using voxel displacement distribution estimation method.
   * The equation number refers to the SPIE paper.
   * Term 1: jacg = mean( J_j * g ) + var( J_j * g ).
   */

  /** Initialize. */
  maxJJ = jacg = 0.0;

  /** Get samples. */
  ImageSampleContainerPointer sampleContainer; // default-constructed (null)
  this->SampleFixedImageForJacobianTerms(sampleContainer);
  const SizeValueType nrofsamples = sampleContainer->Size();

  /** Get the number of parameters. */
  const unsigned int numberOfParameters = static_cast<unsigned int>(this->m_Transform->GetNumberOfParameters());

  /** Get scales vector */
  const ScalesType & scales = this->GetScales();
  this->m_ScaledCostFunction->SetScales(scales);

  /** Get the exact gradient. */
  DerivativeType exactgradient(numberOfParameters);
  exactgradient = mu;

  /** Get transform and set current position. */
  typename TransformType::Pointer transform = this->m_Transform;
  const unsigned int              outdim = this->m_Transform->GetOutputSpaceDimension();

  unsigned int samplenr = 0;

  /** Variables for nonzerojacobian indices and the Jacobian. */
  const SizeValueType        sizejacind = this->m_Transform->GetNumberOfNonZeroJacobianIndices();
  JacobianType               jacj(outdim, sizejacind, 0.0);
  NonZeroJacobianIndicesType jacind(sizejacind);
  jacind[0] = 0;
  if (sizejacind > 1)
  {
    jacind[1] = 0;
  }

  /**
   * Compute maxJJ and jac*gradient
   */
  DerivativeType Jgg(outdim, 0.0);

  std::vector<double> JGG_k;
  JGG_k.reserve(nrofsamples);

  double globalDeformation = 0.0;

  samplenr = 0;
  for (const auto & sample : *sampleContainer)
  {
    /** Read fixed coordinates and get Jacobian. */
    const FixedImagePointType & point = sample.m_ImageCoordinates;
    this->m_Transform->GetJacobian(point, jacj, jacind);

    /** Apply scales, if necessary. */
    if (this->GetUseScales())
    {
      for (unsigned int pi = 0; pi < sizejacind; ++pi)
      {
        const unsigned int p = jacind[pi];
        jacj.scale_column(pi, 1.0 / scales[p]);
      }
    }

    /** Compute the matrix of jac*gradient */
    for (unsigned int i = 0; i < outdim; ++i)
    {
      double temp = 0.0;
      for (unsigned int j = 0; j < sizejacind; ++j)
      {
        int pj = jacind[j];
        temp += jacj(i, j) * exactgradient(pj);
      }
      Jgg(i) = temp;
    }

    globalDeformation += Jgg.magnitude();
    JGG_k.push_back(Jgg.magnitude());
    ++samplenr;

  } // end loop over sample container

  if (methods == "95percentile")
  {
    /** Compute the 95% percentile of the distribution of JGG_k */
    unsigned int d = static_cast<unsigned int>(nrofsamples * 0.95);
    std::sort(JGG_k.begin(), JGG_k.end());
    jacg = (JGG_k[d - 1] + JGG_k[d] + JGG_k[d + 1]) / 3.0;
  }
  else if (methods == "2sigma")
  {
    /** Compute the sigma of the distribution of JGG_k. */
    double sigma = 0.0;
    double mean_JGG = globalDeformation / samplenr;
    for (unsigned int i = 0; i < nrofsamples; ++i)
    {
      sigma += vnl_math::sqr(JGG_k[i] - mean_JGG);
    }
    sigma /= (nrofsamples - 1); // unbiased estimation
    jacg = mean_JGG + 2.0 * std::sqrt(sigma);
  }
} // end ComputeUsingSearchDirection()


/**
 * ************************* SampleFixedImageForJacobianTerms ************************
 */

template <class TFixedImage, class TTransform>
void
ComputeDisplacementDistribution<TFixedImage, TTransform>::SampleFixedImageForJacobianTerms(
  ImageSampleContainerPointer & sampleContainer)
{
  /** Set up grid sampler. */
  ImageGridSamplerPointer sampler = ImageGridSamplerType::New();
  //  ImageFullSamplerPointer sampler = ImageFullSamplerType::New();
  sampler->SetInput(this->m_FixedImage);
  sampler->SetInputImageRegion(this->GetFixedImageRegion());
  sampler->SetMask(this->m_FixedImageMask);

  /** Determine grid spacing of sampler such that the desired
   * NumberOfJacobianMeasurements is achieved approximately.
   * Note that the actually obtained number of samples may be lower, due to masks.
   * This is taken into account at the end of this function.
   */
  SizeValueType nrofsamples = this->m_NumberOfJacobianMeasurements;
  sampler->SetNumberOfSamples(nrofsamples);

  /** Get samples and check the actually obtained number of samples. */
  sampler->Update();
  sampleContainer = sampler->GetOutput();
  nrofsamples = sampleContainer->Size();

  if (nrofsamples == 0)
  {
    itkExceptionMacro("No valid voxels (0/" << this->m_NumberOfJacobianMeasurements
                                            << ") found to estimate the AdaptiveStochasticGradientDescent parameters.");
  }
} // end SampleFixedImageForJacobianTerms()


} // end namespace itk

#endif // end #ifndef itkComputeDisplacementDistribution_hxx