1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
|
/*=========================================================================
*
* Copyright UMC Utrecht and contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkComputeJacobianTerms_hxx
#define itkComputeJacobianTerms_hxx
#include "itkComputeJacobianTerms.h"
#include <vnl/vnl_math.h>
#include <vnl/vnl_fastops.h>
#include <vnl/vnl_diag_matrix.h>
#include <vnl/vnl_sparse_matrix.h>
namespace itk
{
/**
* ************************* Compute ************************
*/
template <class TFixedImage, class TTransform>
void
ComputeJacobianTerms<TFixedImage, TTransform>::Compute(double & TrC, double & TrCC, double & maxJJ, double & maxJCJ)
{
/** This function computes four terms needed for the automatic parameter
* estimation. The equation number refers to the IJCV paper.
* Term 1: TrC, which is the trace of the covariance matrix, needed in (34):
* C = 1/n \sum_{i=1}^n J_i^T J_i (25)
* with n the number of samples, J_i the Jacobian of the i-th sample.
* Term 2: TrCC, which is the Frobenius norm of C, needed in (60):
* ||C||_F^2 = trace( C^T C )
* To compute equations (47) and (54) we need the four sub-terms:
* A: trace( J_j C J_j^T ) in (47)
* B: || J_j C J_j^T ||_F in (47)
* C: || J_j ||_F^2 in (54)
* D: || J_j J_j^T ||_F in (54)
* Term 3: maxJJ, see (47)
* Term 4: maxJCJ, see (54)
*/
/** Initialize. */
TrC = TrCC = maxJJ = maxJCJ = 0.0;
/** Get samples. */
ImageSampleContainerPointer sampleContainer; // default-constructed (null)
SampleFixedImageForJacobianTerms(sampleContainer);
const SizeValueType nrofsamples = sampleContainer->Size();
const double n = static_cast<double>(nrofsamples);
/** Get the number of parameters. */
const unsigned int numberOfParameters = static_cast<unsigned int>(this->m_Transform->GetNumberOfParameters());
/** Get transform and set current position. */
typename TransformType::Pointer transform = this->m_Transform;
const unsigned int outdim = this->m_Transform->GetOutputSpaceDimension();
/** Get scales vector */
const ScalesType & scales = this->m_Scales;
/** Variables for nonzerojacobian indices and the Jacobian. */
const NumberOfParametersType sizejacind = this->m_Transform->GetNumberOfNonZeroJacobianIndices();
JacobianType jacj(outdim, sizejacind, 0.0);
NonZeroJacobianIndicesType jacind(sizejacind);
jacind[0] = 0;
if (sizejacind > 1)
{
jacind[1] = 0;
}
NonZeroJacobianIndicesType prevjacind = jacind;
using FreqPairType = std::pair<unsigned int, unsigned int>;
using DifHist2Type = std::vector<FreqPairType>;
DifHist2Type difHist2;
{
/** DifHist is a histogram of absolute parameterNrDifferences that
* occur in the nonzerojacobianindex vectors.
* DifHist2 is another way of storing the histogram, as a vector
* of pairs. pair.first = Frequency, pair.second = parameterNrDifference.
* This is useful for sorting.
*/
using DifHistType = std::vector<unsigned int>;
DifHistType difHist(numberOfParameters);
/** Try to guess the band structure of the covariance matrix.
* A 'band' is a series of elements cov(p,q) with constant q-p.
* In the loop below, on a few positions in the image the Jacobian
* is computed. The nonzerojacobianindices are inspected to figure out
* which values of q-p occur often. This is done by making a histogram.
* The histogram is then sorted and the most occurring bands
* are determined. The covariance elements in these bands will not
* be stored in the sparse matrix structure 'cov', but in the band
* matrix 'bandcov', which is much faster.
* Only after the bandcov and cov have been filled (by looping over
* all Jacobian measurements in the sample container, the bandcov
* matrix is injected in the cov matrix, for easy further calculations,
* and the bandcov matrix is deleted.
*/
unsigned int onezero = 0;
for (unsigned int s = 0; s < this->m_NumberOfBandStructureSamples; ++s)
{
/** Semi-randomly get some samples from the sample container. */
const unsigned int samplenr = (s + 1) * nrofsamples / (this->m_NumberOfBandStructureSamples + 2 + onezero);
onezero = 1 - onezero; // introduces semi-randomness
/** Read fixed coordinates and get Jacobian J_j. */
const FixedImagePointType & point = sampleContainer->GetElement(samplenr).m_ImageCoordinates;
this->m_Transform->GetJacobian(point, jacj, jacind);
/** Skip invalid Jacobians in the beginning, if any. */
if (sizejacind > 1)
{
if (jacind[0] == jacind[1])
{
continue;
}
}
/** Fill the histogram of parameter nr differences. */
for (unsigned int i = 0; i < sizejacind; ++i)
{
const int jacindi = static_cast<int>(jacind[i]);
for (unsigned int j = i; j < sizejacind; ++j)
{
const int jacindj = static_cast<int>(jacind[j]);
difHist[static_cast<unsigned int>(std::abs(jacindj - jacindi))]++;
}
}
}
/** Copy the nonzero elements of the difHist to a vector pairs. */
for (unsigned int p = 0; p < numberOfParameters; ++p)
{
const unsigned int freq = difHist[p];
if (freq != 0)
{
difHist2.push_back(FreqPairType(freq, p));
}
}
} // End of scope of difHist.
/** Compute the number of bands. */
const unsigned int bandcovsize = std::min(this->m_MaxBandCovSize, static_cast<unsigned int>(difHist2.size()));
/** Maps parameterNrDifference (q-p) to colnr in bandcov. */
std::vector<unsigned int> bandcovMap(numberOfParameters, bandcovsize);
/** Maps colnr in bandcov to parameterNrDifference (q-p). */
std::vector<unsigned int> bandcovMap2(bandcovsize, numberOfParameters);
/** Sort the difHist2 based on the frequencies. */
std::sort(difHist2.begin(), difHist2.end());
/** Determine the bands that are expected to be most dominant. */
DifHist2Type::iterator difHist2It = difHist2.end();
for (unsigned int b = 0; b < bandcovsize; ++b)
{
--difHist2It;
bandcovMap[difHist2It->second] = b;
bandcovMap2[b] = difHist2It->second;
}
using CovarianceValueType = double;
using CovarianceMatrixType = vnl_matrix<CovarianceValueType>;
using DiagCovarianceMatrixType = vnl_diag_matrix<CovarianceValueType>;
/** Initialize covariance matrix. Sparse, diagonal, and band form. */
vnl_sparse_matrix<CovarianceValueType> cov(numberOfParameters, numberOfParameters);
DiagCovarianceMatrixType diagcov(numberOfParameters, 0.0);
/** For temporary storage of J'J. */
CovarianceMatrixType jactjac(sizejacind, sizejacind, 0.0);
/** Initialize band matrix. */
CovarianceMatrixType bandcov(numberOfParameters, bandcovsize, 0.0);
/**
* TERM 1
*
* Loop over image and compute Jacobian.
* Compute C = 1/n \sum_i J_i^T J_i
* Possibly apply scaling afterwards.
*/
jacind[0] = 0;
if (sizejacind > 1)
{
jacind[1] = 0;
}
for (const auto & sample : *sampleContainer)
{
/** Read fixed coordinates and get Jacobian J_j. */
const FixedImagePointType & point = sample.m_ImageCoordinates;
this->m_Transform->GetJacobian(point, jacj, jacind);
/** Skip invalid Jacobians in the beginning, if any. */
if (sizejacind > 1)
{
if (jacind[0] == jacind[1])
{
continue;
}
}
if (jacind == prevjacind)
{
/** Update sum of J_j^T J_j. */
vnl_fastops::inc_X_by_AtA(jactjac, jacj);
}
else
{
/** The following should only be done after the first sample. */
if (&sample != &(sampleContainer->front()))
{
/** Update covariance matrix. */
for (unsigned int pi = 0; pi < sizejacind; ++pi)
{
const unsigned int p = prevjacind[pi];
for (unsigned int qi = 0; qi < sizejacind; ++qi)
{
const unsigned int q = prevjacind[qi];
if (q >= p)
{
const double tempval = jactjac(pi, qi) / n;
if (std::abs(tempval) > 1e-14)
{
const unsigned int bandindex = bandcovMap[q - p];
if (bandindex < bandcovsize)
{
bandcov(p, bandindex) += tempval;
}
else
{
cov(p, q) += tempval;
}
}
}
} // qi
} // pi
} // end if
/** Initialize jactjac by J_j^T J_j. */
vnl_fastops::AtA(jactjac, jacj);
/** Remember nonzerojacobian indices. */
prevjacind = jacind;
} // end else
} // end iter loop: end computation of covariance matrix
/** Update covariance matrix once again to include last jactjac updates
* \todo: a bit ugly that this loop is copied from above.
*/
for (unsigned int pi = 0; pi < sizejacind; ++pi)
{
const unsigned int p = prevjacind[pi];
for (unsigned int qi = 0; qi < sizejacind; ++qi)
{
const unsigned int q = prevjacind[qi];
if (q >= p)
{
const double tempval = jactjac(pi, qi) / n;
if (std::abs(tempval) > 1e-14)
{
const unsigned int bandindex = bandcovMap[q - p];
if (bandindex < bandcovsize)
{
bandcov(p, bandindex) += tempval;
}
else
{
cov(p, q) += tempval;
}
}
}
} // qi
} // pi
/** Copy the bandmatrix into the sparse matrix and empty the bandcov matrix.
* \todo: perhaps work further with this bandmatrix instead.
*/
for (unsigned int p = 0; p < numberOfParameters; ++p)
{
for (unsigned int b = 0; b < bandcovsize; ++b)
{
const double tempval = bandcov(p, b);
if (std::abs(tempval) > 1e-14)
{
const unsigned int q = p + bandcovMap2[b];
cov(p, q) = tempval;
}
}
}
bandcov.set_size(0, 0);
/** Apply scales. the use of m_Scales maybe something wrong. */
if (this->m_UseScales)
{
for (unsigned int p = 0; p < numberOfParameters; ++p)
{
cov.scale_row(p, 1.0 / this->m_Scales[p]);
}
/** \todo: this might be faster with get_row instead of the iterator */
cov.reset();
bool notfinished = cov.next();
while (notfinished)
{
const int col = cov.getcolumn();
cov(cov.getrow(), col) /= scales[col];
notfinished = cov.next();
}
}
/** Compute TrC = trace(C), and diagcov. */
for (unsigned int p = 0; p < numberOfParameters; ++p)
{
if (!cov.empty_row(p))
{
// avoid creation of element if the row is empty
CovarianceValueType & covpp = cov(p, p);
TrC += covpp;
diagcov[p] = covpp;
}
}
/**
* TERM 2
*
* Compute TrCC = ||C||_F^2.
*/
cov.reset();
bool notfinished2 = cov.next();
while (notfinished2)
{
TrCC += vnl_math::sqr(cov.value());
notfinished2 = cov.next();
}
/** Symmetry: multiply by 2 and subtract sumsqr(diagcov). */
TrCC *= 2.0;
TrCC -= diagcov.diagonal().squared_magnitude();
/**
* TERM 3 and 4
*
* Compute maxJJ and maxJCJ
* \li maxJJ = max_j [ ||J_j||_F^2 + 2\sqrt{2} || J_j J_j^T ||_F ]
* \li maxJCJ = max_j [ Tr( J_j C J_j^T ) + 2\sqrt{2} || J_j C J_j^T ||_F ]
*/
maxJJ = 0.0;
maxJCJ = 0.0;
const double sqrt2 = std::sqrt(static_cast<double>(2.0));
JacobianType jacjjacj(outdim, outdim);
JacobianType jacjcov(outdim, sizejacind);
DiagCovarianceMatrixType diagcovsparse(sizejacind);
JacobianType jacjdiagcov(outdim, sizejacind);
JacobianType jacjdiagcovjacj(outdim, outdim);
JacobianType jacjcovjacj(outdim, outdim);
itk::Array<SizeValueType> jacindExpanded(numberOfParameters);
for (const auto & sample : *sampleContainer)
{
/** Read fixed coordinates and get Jacobian. */
const FixedImagePointType & point = sample.m_ImageCoordinates;
this->m_Transform->GetJacobian(point, jacj, jacind);
/** Apply scales, if necessary. */
if (this->m_UseScales)
{
for (unsigned int pi = 0; pi < sizejacind; ++pi)
{
const unsigned int p = jacind[pi];
jacj.scale_column(pi, 1.0 / scales[p]);
}
}
/** Compute 1st part of JJ: ||J_j||_F^2. */
double JJ_j = vnl_math::sqr(jacj.frobenius_norm());
/** Compute 2nd part of JJ: 2\sqrt{2} || J_j J_j^T ||_F. */
vnl_fastops::ABt(jacjjacj, jacj, jacj);
JJ_j += 2.0 * sqrt2 * jacjjacj.frobenius_norm();
/** Max_j [JJ_j]. */
maxJJ = std::max(maxJJ, JJ_j);
/** Compute JCJ_j. */
double JCJ_j = 0.0;
/** J_j C = jacjC. */
jacjcov.Fill(0.0);
/** Store the nonzero Jacobian indices in a different format
* and create the sparse diagcov.
*/
jacindExpanded.Fill(sizejacind);
for (unsigned int pi = 0; pi < sizejacind; ++pi)
{
const unsigned int p = jacind[pi];
jacindExpanded[p] = pi;
diagcovsparse[pi] = diagcov[p];
}
/** We below calculate jacjC = J_j cov^T, but later we will correct
* for this using:
* J C J' = J (cov + cov' - diag(cov')) J'.
* (NB: cov now still contains only the upper triangular part of C)
*/
for (unsigned int pi = 0; pi < sizejacind; ++pi)
{
/** Loop over row of the sparse cov matrix. */
for (const auto & covRowEntry : cov.get_row(jacind[pi]))
{
const unsigned int q = covRowEntry.first;
const unsigned int qi = jacindExpanded[q];
if (qi < sizejacind)
{
/** If found, update the jacjC matrix. */
const CovarianceValueType covElement = covRowEntry.second;
for (unsigned int dx = 0; dx < outdim; ++dx)
{
jacjcov[dx][pi] += jacj[dx][qi] * covElement;
} // dx
} // if qi < sizejacind
} // for covrow
} // pi
/** J_j C J_j^T = jacjCjacj.
* But note that we actually compute J_j cov' J_j^T
*/
vnl_fastops::ABt(jacjcovjacj, jacjcov, jacj);
/** jacjCjacj = jacjCjacj+ jacjCjacj' - jacjdiagcovjacj */
jacjdiagcov = jacj * diagcovsparse;
vnl_fastops::ABt(jacjdiagcovjacj, jacjdiagcov, jacj);
jacjcovjacj += jacjcovjacj.transpose();
jacjcovjacj -= jacjdiagcovjacj;
/** Compute 1st part of JCJ: Tr( J_j C J_j^T ). */
for (unsigned int d = 0; d < outdim; ++d)
{
JCJ_j += jacjcovjacj[d][d];
}
/** Compute 2nd part of JCJ_j: 2 \sqrt{2} || J_j C J_j^T ||_F. */
JCJ_j += 2.0 * sqrt2 * jacjcovjacj.frobenius_norm();
/** Max_j [JCJ_j]. */
maxJCJ = std::max(maxJCJ, JCJ_j);
} // end loop over sample container
/** Finalize progress information. */
// progressObserver->PrintProgress( 1.0 );
} // end Compute()
/**
* ************************* SampleFixedImageForJacobianTerms ************************
*/
template <class TFixedImage, class TTransform>
void
ComputeJacobianTerms<TFixedImage, TTransform>::SampleFixedImageForJacobianTerms(
ImageSampleContainerPointer & sampleContainer)
{
/** Set up grid sampler. */
ImageGridSamplerPointer sampler = ImageGridSamplerType::New();
sampler->SetInput(this->m_FixedImage);
sampler->SetInputImageRegion(this->GetFixedImageRegion());
sampler->SetMask(this->m_FixedImageMask);
/** Determine grid spacing of sampler such that the desired
* NumberOfJacobianMeasurements is achieved approximately.
* Note that the actually obtained number of samples may be lower, due to masks.
* This is taken into account at the end of this function.
*/
SizeValueType nrofsamples = this->m_NumberOfJacobianMeasurements;
sampler->SetNumberOfSamples(nrofsamples);
/** Get samples and check the actually obtained number of samples. */
sampler->Update();
sampleContainer = sampler->GetOutput();
nrofsamples = sampleContainer->Size();
if (nrofsamples == 0)
{
itkExceptionMacro("No valid voxels (0/" << this->m_NumberOfJacobianMeasurements
<< ") found to estimate the AdaptiveStochasticGradientDescent parameters.");
}
} // end SampleFixedImageForJacobianTerms()
} // end namespace itk
#endif // end #ifndef itkComputeJacobianTerms_hxx
|