1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
|
/*=========================================================================
*
* Copyright UMC Utrecht and contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkComputePreconditionerUsingDisplacementDistribution_hxx
#define itkComputePreconditionerUsingDisplacementDistribution_hxx
#include "itkComputePreconditionerUsingDisplacementDistribution.h"
#include <vnl/vnl_math.h>
#include "itkImageScanlineIterator.h"
#include "itkImageSliceIteratorWithIndex.h"
#include "itkCropImageFilter.h"
#include "itkMirrorPadImageFilter.h"
#include "itkZeroFluxNeumannPadImageFilter.h"
#include "itkSmoothingRecursiveGaussianImageFilter.h"
#include <algorithm> // For min and max.
#include <cmath> // For abs.
namespace itk
{
/**
* ************************* Constructor ************************
*/
template <class TFixedImage, class TTransform>
ComputePreconditionerUsingDisplacementDistribution<TFixedImage,
TTransform>::ComputePreconditionerUsingDisplacementDistribution()
{
this->m_RegularizationKappa = 0.8;
this->m_MaximumStepLength = 1.0;
this->m_ConditionNumber = 2.0;
} // end Constructor
/**
* ************************* Compute ************************
*/
template <class TFixedImage, class TTransform>
void
ComputePreconditionerUsingDisplacementDistribution<TFixedImage, TTransform>::Compute(const ParametersType &,
double &,
double &,
std::string)
{
itkExceptionMacro("ERROR: do not call");
} // end Compute()
/**
* ************************* Compute ************************
*/
template <class TFixedImage, class TTransform>
void
ComputePreconditionerUsingDisplacementDistribution<TFixedImage, TTransform>::Compute(const ParametersType & mu,
double & maxJJ,
ParametersType & preconditioner)
{
/** Initialize. */
maxJJ = 0.0;
/** Get the number of parameters. */
const unsigned int numberOfParameters = static_cast<unsigned int>(this->m_Transform->GetNumberOfParameters());
// Replace by a general check later.
bool transformIsBSpline = false;
if (numberOfParameters > 13)
transformIsBSpline = true; // assume B-spline
/** Get the exact gradient. Uses a random coordinate sampler with
* NumberOfSamplesForPrecondition samples, which equals numberOfParameters.
*/
DerivativeType exactgradient(numberOfParameters);
this->GetScaledDerivative(mu, exactgradient);
/** Get samples. Uses a grid sampler with m_NumberOfJacobianMeasurements samples. */
ImageSampleContainerPointer sampleContainer;
this->SampleFixedImageForJacobianTerms(sampleContainer);
/** Get transform and set current position. */
typename TransformType::Pointer transform = this->m_Transform;
const unsigned int outdim = this->m_Transform->GetOutputSpaceDimension();
/** Variables for nonzerojacobian indices and the Jacobian. */
const SizeValueType sizejacind = this->m_Transform->GetNumberOfNonZeroJacobianIndices();
JacobianType jacj(outdim, sizejacind, 0.0);
NonZeroJacobianIndicesType jacind(sizejacind);
/** Declare temporary variables. Not needed for all methods. check later */
DerivativeType jacj_g(outdim, 0.0);
JacobianType jacjjacj(outdim, outdim);
const double sqrt2 = std::sqrt(static_cast<double>(2.0));
std::vector<double> localStepSizeSquared(numberOfParameters, 0.0);
ParametersType binCount(numberOfParameters, 0.0);
/** Loop over all voxels in the sample container. */
for (const auto & sample : *sampleContainer)
{
/** Read fixed coordinates and get Jacobian. */
const FixedImagePointType & point = sample.m_ImageCoordinates;
this->m_Transform->GetJacobian(point, jacj, jacind);
/** Compute 1st part of JJ: ||J_j||_F^2. */
double JJ_j = vnl_math::sqr(jacj.frobenius_norm());
/** Compute 2nd part of JJ: 2\sqrt{2} || J_j J_j^T ||_F. */
vnl_fastops::ABt(jacjjacj, jacj, jacj);
JJ_j += 2.0 * sqrt2 * jacjjacj.frobenius_norm();
/** Max_j [JJ_j]. */
maxJJ = std::max(maxJJ, JJ_j);
double displacement2_j = 0.0;
if (transformIsBSpline)
{
for (unsigned int i = 0; i < outdim; ++i)
{
double temp = 0.0;
for (unsigned int j = 0; j < sizejacind; ++j)
{
int pj = jacind[j];
temp += jacj(i, j) * exactgradient(pj);
}
// Use the absolute value
jacj_g(i) = std::abs(temp);
}
displacement2_j = jacj_g.magnitude();
}
/** Update all entries of the pre-conditioner. */
for (unsigned int j = 0; j < sizejacind; ++j)
{
const unsigned int pj = jacind[j];
double displacement_j = 0.0;
double jacj_current = 0.0;
for (unsigned int i = 0; i < outdim; ++i)
{
jacj_current += std::abs(jacj(i, j));
}
displacement_j = std::abs(jacj_current * exactgradient(pj));
if (transformIsBSpline)
{
displacement_j =
displacement_j * this->m_RegularizationKappa + (1.0 - this->m_RegularizationKappa) * displacement2_j;
}
else
{ // else for affine and rigid
double diff_jacobian = 0;
double weight = 0;
double sum_displacement = 0;
double sum_weight = 0;
double weight_sigma = 0.01;
double maxdiff = 0.0;
double mindiff = 0.0;
bool mindiffCheck = true;
/** Obtain the maximum and minimum difference of absolute jacobian. */
for (unsigned int k = 0; k < sizejacind; ++k)
{
if (k != j)
{
double jacj_k = 0.0;
for (unsigned int i = 0; i < outdim; ++i)
{
jacj_k += std::abs(jacj(i, k));
}
diff_jacobian = std::abs(jacj_k - jacj_current);
if (diff_jacobian > 0 && mindiffCheck)
{
mindiff = diff_jacobian;
mindiffCheck = false;
}
if (diff_jacobian > 0 && !mindiffCheck)
{
mindiff = diff_jacobian < mindiff ? diff_jacobian : mindiff;
}
maxdiff = diff_jacobian > maxdiff ? diff_jacobian : maxdiff;
} // end if
} // end for
if (maxdiff > 0)
{
weight_sigma = mindiff / maxdiff;
}
else
{
weight_sigma = 1e-9;
}
/** To regularize the other entries using the neighborhood information. */
for (unsigned int k = 0; k < sizejacind; ++k)
{
const unsigned int pk = jacind[k];
if (k != j)
{
double jacj_k = 0.0;
for (unsigned int i = 0; i < outdim; ++i)
{
jacj_k += std::abs(jacj(i, k));
}
diff_jacobian = std::abs(jacj_k - jacj_current);
weight = std::exp(-(vnl_math::sqr(diff_jacobian / weight_sigma) / 2.0));
sum_displacement += std::abs(jacj_k * exactgradient(pk)) * weight;
sum_weight += weight;
} // end if
} // end for loop regularization
if (sum_weight > 0.0)
{
sum_displacement /= sum_weight;
/** regularize. */
displacement_j =
displacement_j * this->m_RegularizationKappa + (1.0 - this->m_RegularizationKappa) * sum_displacement;
}
} // end else for affine and rigid
/** Compute the displacement due to a change in this parameter. */
/** localStepSize keeps track of the mean displacement.
* localStepSizeSquared keeps track of the standard deviation.
*/
preconditioner[pj] += displacement_j;
localStepSizeSquared[pj] += displacement_j * displacement_j;
binCount[pj] += 1.0;
}
} // end loop over sample container
/** Compute the mean local step sizes and apply the 2 sigma rule. */
double maxEigenvalue = -1e+9;
double minEigenvalue = 1e+9;
for (unsigned int i = 0; i < numberOfParameters; ++i)
{
/** Mean deformation magnitude. */
double nonZeroBin = binCount[i];
const double meanLocalStepSize = preconditioner[i] / (nonZeroBin + 1e-14);
double sigma = localStepSizeSquared[i] / (nonZeroBin + 1e-14) - meanLocalStepSize * meanLocalStepSize;
/** Due to numerical issues, in case of very small squared sums and means,
* the standard deviation may become negative. This happens for example in
* case of an affine transformation for the translational parameters.
*/
if (sigma < 1e-14)
sigma = 0;
/** Apply the 2 sigma rule. */
double localStep = meanLocalStepSize + 2.0 * std::sqrt(sigma) + 1e-14;
minEigenvalue = std::min(localStep, minEigenvalue);
maxEigenvalue = std::max(localStep, maxEigenvalue);
preconditioner[i] = this->m_MaximumStepLength / localStep;
} // end loop over step size vector
/** Constrained the condition number into a given range, here we first try kappa = 2. */
double conditionNumber = maxEigenvalue / minEigenvalue;
if (transformIsBSpline && conditionNumber > this->m_ConditionNumber)
{
minEigenvalue = maxEigenvalue / this->m_ConditionNumber;
for (unsigned int i = 0; i < numberOfParameters; ++i)
{
preconditioner[i] = std::min(preconditioner[i], this->m_MaximumStepLength / minEigenvalue);
}
} // end condition number check.
} // end Compute()
/**
* ************************* ComputeJacobiTypePreconditioner ************************
*/
template <class TFixedImage, class TTransform>
void
ComputePreconditionerUsingDisplacementDistribution<TFixedImage, TTransform>::ComputeJacobiTypePreconditioner(
double & maxJJ,
ParametersType & preconditioner)
{
/** Initialize. */
maxJJ = 0.0;
/** Get the number of parameters. */
const unsigned int numberOfParameters = static_cast<unsigned int>(this->m_Transform->GetNumberOfParameters());
// Replace by a general check later.
bool transformIsBSpline = false;
if (numberOfParameters > 13)
transformIsBSpline = true; // assume B-spline
/** Get samples. Uses a grid sampler with m_NumberOfJacobianMeasurements samples. */
ImageSampleContainerPointer sampleContainer;
this->SampleFixedImageForJacobianTerms(sampleContainer);
/** Get transform and set current position. */
typename TransformType::Pointer transform = this->m_Transform;
const unsigned int outdim = this->m_Transform->GetOutputSpaceDimension();
/** Variables for nonzerojacobian indices and the Jacobian. */
const SizeValueType sizejacind = this->m_Transform->GetNumberOfNonZeroJacobianIndices();
JacobianType jacj(outdim, sizejacind);
jacj.Fill(0.0);
JacobianType jacjjacj(outdim, outdim);
const double sqrt2 = std::sqrt(static_cast<double>(2.0));
NonZeroJacobianIndicesType jacind(sizejacind);
ParametersType binCount(numberOfParameters, 0.0);
/** Loop over all voxels in the sample container. */
for (const auto & sample : *sampleContainer)
{
/** Read fixed coordinates and get Jacobian. */
const FixedImagePointType & point = sample.m_ImageCoordinates;
this->m_Transform->GetJacobian(point, jacj, jacind);
/** Compute 1st part of JJ: ||J_j||_F^2. */
double JJ_j = vnl_math::sqr(jacj.frobenius_norm());
/** Compute 2nd part of JJ: 2\sqrt{2} || J_j J_j^T ||_F. */
vnl_fastops::ABt(jacjjacj, jacj, jacj);
JJ_j += 2.0 * sqrt2 * jacjjacj.frobenius_norm();
/** Max_j [JJ_j]. */
maxJJ = std::max(maxJJ, JJ_j);
for (unsigned int i = 0; i < outdim; ++i)
{
for (unsigned int j = 0; j < sizejacind; ++j)
{
const unsigned int pj = jacind[j];
preconditioner[pj] += vnl_math::sqr(jacj(i, j));
binCount[pj] += 1;
}
}
}
double maxEigenvalue = -1e+9;
double minEigenvalue = 1e+9;
for (unsigned int i = 0; i < numberOfParameters; ++i)
{
double nonZeroBin = binCount[i] / outdim;
if (nonZeroBin > 0 && preconditioner[i] > 1e-9)
{
double eigenvalue = std::sqrt(preconditioner[i] / (nonZeroBin)) + 1e-14;
maxEigenvalue = std::max(eigenvalue, maxEigenvalue);
minEigenvalue = std::min(eigenvalue, minEigenvalue);
preconditioner[i] = 1.0 / eigenvalue;
}
}
/** Condition number check. */
double conditionNumber = maxEigenvalue / minEigenvalue;
if (transformIsBSpline && conditionNumber > this->m_ConditionNumber)
{
minEigenvalue = maxEigenvalue / this->m_ConditionNumber;
for (unsigned int i = 0; i < numberOfParameters; ++i)
{
preconditioner[i] = std::min(preconditioner[i], 1.0 / minEigenvalue);
}
}
} // end ComputeJacobiTypePreconditioner()
/**
* ************************* PreconditionerInterpolation ************************
*/
template <class TFixedImage, class TTransform>
void
ComputePreconditionerUsingDisplacementDistribution<TFixedImage, TTransform>::PreconditionerInterpolation(
ParametersType & preconditioner)
{
// Note: This function is only meant for the B-spline transformation
#define UseOldMethod
const unsigned int SplineOrder = 3;
using CombinationTransformType = AdvancedCombinationTransform<double, FixedImageDimension>;
using BSplineTransformType = AdvancedBSplineDeformableTransform<double, FixedImageDimension, SplineOrder>;
using GridSizeType = typename BSplineTransformType::SizeType;
using GridIndexType = typename BSplineTransformType::IndexType;
using GridSpacingType = typename BSplineTransformType::SpacingType;
using GridOriginType = typename BSplineTransformType::OriginType;
using GridDirectionType = typename BSplineTransformType::DirectionType;
using GridRegionType = typename BSplineTransformType::RegionType;
using CoefficientImageType = typename BSplineTransformType::ImageType;
using IteratorType = ImageRegionIteratorWithIndex<CoefficientImageType>;
using ImageScanlineIteratorType = ImageLinearIteratorWithIndex<CoefficientImageType>;
using SliceIteratorType = ImageSliceIteratorWithIndex<CoefficientImageType>;
using CropImageFilterType = CropImageFilter<CoefficientImageType, CoefficientImageType>;
// typedef MirrorPadImageFilter<CoefficientImageType,CoefficientImageType> PadImageFilterType;
using PadImageFilterType = ZeroFluxNeumannPadImageFilter<CoefficientImageType, CoefficientImageType>;
using SmoothingFilterType = SmoothingRecursiveGaussianImageFilter<CoefficientImageType, CoefficientImageType>;
CombinationTransformType * testPtr_combo = dynamic_cast<CombinationTransformType *>(this->m_Transform.GetPointer());
if (!testPtr_combo)
return; // throw an error?
const auto testPtr_bspline = dynamic_cast<const BSplineTransformType *>(testPtr_combo->GetCurrentTransform());
if (!testPtr_bspline)
return; // throw an error?
GridRegionType gridRegion = testPtr_bspline->GetGridRegion();
GridSpacingType gridSpacing = testPtr_bspline->GetGridSpacing();
GridOriginType gridOrigin = testPtr_bspline->GetGridOrigin();
GridDirectionType gridDirection = testPtr_bspline->GetGridDirection();
auto coefImage = CoefficientImageType::New();
coefImage->SetRegions(gridRegion);
coefImage->SetSpacing(gridSpacing);
coefImage->SetOrigin(gridOrigin);
coefImage->SetDirection(gridDirection);
coefImage->Allocate();
// auto mask = MaskImageType::New();
// mask->CopyInformation( coefImage );
// mask->Allocate();
// mask->FillBuffer( 0 );
GridRegionType region2 = gridRegion;
GridSizeType & size2 = region2.GetModifiableSize();
size2[0] = size2[0] - SplineOrder;
size2[1] = size2[1] - SplineOrder;
size2[2] = size2[2] - SplineOrder;
GridIndexType & index2 = region2.GetModifiableIndex();
index2[0] = SplineOrder - 1;
index2[1] = SplineOrder - 1;
index2[2] = SplineOrder - 1;
// Loop over the x, y and z parts of the B-spline separately.
for (unsigned int i = 0; i < FixedImageDimension; ++i)
{
// Copy the preconditioner values to an image
IteratorType it(coefImage, coefImage->GetLargestPossibleRegion());
unsigned int k = i * gridRegion.GetNumberOfPixels();
while (!it.IsAtEnd())
{
#ifdef UseOldMethod // copy only inner region
// std::cerr << preconditioner[ i ] << " ";
if (region2.IsInside(it.GetIndex()))
{
it.Set(preconditioner[k]);
}
else
{
it.Set(-1.0);
}
#else // copy all, todo: can we trust the outer rim?
it.Set(preconditioner[k]);
#endif
++k;
++it;
}
// tmp write
// using WriterType = ImageFileWriter<CoefficientImageType>;
// auto writer1 = WriterType::New();
// writer1->SetFileName( "P_0.mha" );
// writer1->SetInput( coefImage );
// writer1->Update();
// first time smooth
auto smoother = SmoothingFilterType::New();
// smoother->SetInput(coefImage);
// smoother->SetSigma(0.5);
// smoother->Update();
//
// // tmp write
// auto writer3 = WriterType::New();
// writer3->SetFileName("P_coefImageSmooth.mha");
// //writer2->SetInput( padder->GetOutput() );
// writer3->SetInput(smoother->GetOutput());
// writer3->Update();
#ifdef UseOldMethod
// Fill the holes by a left-right sweep on the interior only, i.e. not
// considering the part outside the image.
// ImageScanlineIteratorType it2 = ImageScanlineIteratorType( coefImage, coefImage->GetLargestPossibleRegion() );
ImageScanlineIteratorType it2(coefImage, region2);
while (!it2.IsAtEnd())
{
// forward
double previous = -1.0;
while (!it2.IsAtEndOfLine())
{
double current = it2.Value();
// if( (current == 0.0 && previous > 0.0) || ( current > upperBound && previous < upperBound ))
if (current == 0.0 && previous > 0.0)
{
it2.Set(previous);
}
else
{
previous = current;
}
++it2;
}
// backward
it2.GoToEndOfLine();
previous = -1.0;
while (!it2.IsAtReverseEndOfLine())
{
double current = it2.Value();
if (current == 0.0 && previous > 0.0)
{
it2.Set(previous);
}
else
{
previous = current;
}
--it2;
}
it2.NextLine();
}
SliceIteratorType itSlice(coefImage, region2);
itSlice.SetFirstDirection(2);
itSlice.SetSecondDirection(0);
while (!itSlice.IsAtEnd())
{
while (!itSlice.IsAtEndOfSlice())
{
// forward
double previous = -1.0;
while (!itSlice.IsAtEndOfLine())
{
double current = itSlice.Value();
if (current == 0.0 && previous > 0.0)
{
itSlice.Set(previous);
}
else
{
previous = current;
}
++itSlice;
}
itSlice.NextLine();
}
itSlice.NextSlice();
}
itSlice.GoToReverseBegin();
while (!itSlice.IsAtReverseEnd())
{
while (!itSlice.IsAtReverseEndOfSlice())
{
// backward
double previous = -1.0;
while (!itSlice.IsAtReverseEndOfLine())
{
double current = itSlice.Value();
if (current == 0.0 && previous > 0.0)
{
itSlice.Set(previous);
}
else
{
previous = current;
}
--itSlice;
}
itSlice.PreviousLine();
}
itSlice.PreviousSlice();
}
#else // use new method
// average over the neighborhood using only the non -1 entries
// we should repeat this a couple of times, until no -1's are left
double tmp = 0.0;
GridSizeType radius;
radius.Fill(1);
NeighborhoodIterator<CoefficientImageType> nit(radius, coefImage, region2);
while (!nit.IsAtEnd())
{
if (nit.GetCenterPixel() > -0.5)
{
++nit;
continue;
}
// average over the neighborhood
double accum = 0.0;
unsigned int count = 0;
for (unsigned int i = 0; i < nit.Size(); ++i)
{
tmp = nit.GetPixel(i);
if (tmp > -0.5)
{
accum += tmp;
++count;
}
}
if (count > 0)
{
nit.SetCenterPixel(accum / static_cast<double>(count));
}
++nit;
}
#endif
// tmp write
// auto writer2 = WriterType::New();
// writer2->SetFileName("P_1.mha");
// writer2->SetInput( coefImage );
// writer2->Update();
#ifdef UseOldMethod
GridSizeType size_tmp;
// First remove the outer border with -1 information
auto cropper = CropImageFilterType::New();
cropper->SetInput(coefImage);
size_tmp.Fill(1);
cropper->SetUpperBoundaryCropSize(size_tmp);
size_tmp.Fill(2);
cropper->SetLowerBoundaryCropSize(size_tmp);
// Then add the border using zero flux Neumann
auto padder = PadImageFilterType::New();
padder->SetInput(cropper->GetOutput());
size_tmp.Fill(1);
padder->SetPadUpperBound(size_tmp);
size_tmp.Fill(2);
padder->SetPadLowerBound(size_tmp);
#endif
// smooth?
// auto smoother = SmoothingFilterType::New();
#ifdef UseOldMethod
smoother->SetInput(padder->GetOutput());
#else
smoother->SetInput(coefImage);
#endif
smoother->SetSigma(0.5);
// tmp write
// auto writer2 = WriterType::New();
// writer2->SetFileName( "P_3.mha" );
#ifdef UseOldMethod
// writer2->SetInput( padder->GetOutput() );
// writer2->SetInput( smoother->GetOutput() );
#else
writer2->SetInput(coefImage);
// writer2->SetInput( smoother->GetOutput() );
#endif
// writer2->Update();
// Copy back
k = i * gridRegion.GetNumberOfPixels();
#ifdef UseOldMethod
IteratorType it3(padder->GetOutput(), padder->GetOutput()->GetLargestPossibleRegion());
// IteratorType it3( smoother->GetOutput(), smoother->GetOutput()->GetLargestPossibleRegion() );
#else
IteratorType it3(coefImage, coefImage->GetLargestPossibleRegion());
// IteratorType it3( smoother->GetOutput(), smoother->GetOutput()->GetLargestPossibleRegion() );
#endif
while (!it3.IsAtEnd())
{
preconditioner[k] = it3.Value() + 1e-8;
++k;
++it3;
}
} // end loop over all dimensions
// unsigned int P = localStepSize.size();
// for( unsigned int i = 0; i < P; ++i )
// {
// std::cerr << localStepSize[ i ] << " ";
// }
// std::cerr << std::endl;
} // end PreconditionerInterpolation()
} // end namespace itk
#endif // end #ifndef itkComputePreconditionerUsingDisplacementDistribution_hxx
|