File: itkAdvancedKappaStatisticImageToImageMetric.h

package info (click to toggle)
elastix 5.2.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 42,480 kB
  • sloc: cpp: 68,403; lisp: 4,118; python: 1,013; xml: 182; sh: 177; makefile: 33
file content (267 lines) | stat: -rw-r--r-- 10,984 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/*=========================================================================
 *
 *  Copyright UMC Utrecht and contributors
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *        http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkAdvancedKappaStatisticImageToImageMetric_h
#define itkAdvancedKappaStatisticImageToImageMetric_h

#include "itkAdvancedImageToImageMetric.h"
#include <vector>

namespace itk
{

/** \class AdvancedKappaStatisticImageToImageMetric
 * \brief Computes similarity between two objects to be registered
 *
 * This class is templated over the type of the fixed and moving
 * images to be compared.  The metric here is designed for matching
 * pixels in two images with the same exact value.  Only one value can
 * be considered (the default is 255) and can be specified with the
 * SetForegroundValue method.  In the computation of the metric, only
 * foreground pixels are considered.  The metric value is given
 * by 2*|A&B|/(|A|+|B|), where A is the foreground region in the moving
 * image, B is the foreground region in the fixed image, & is intersection,
 * and |.| indicates the area of the enclosed set.  The metric is
 * described in "Morphometric Analysis of White Matter Lesions in MR
 * Images: Method and Validation", A. P. Zijdenbos, B. M. Dawant, R. A.
 * Margolin, A. C. Palmer.
 *
 * This metric is especially useful when considering the similarity between
 * binary images.  Given the nature of binary images, a nearest neighbor
 * interpolator is the preferred interpolator.
 *
 * Metric values range from 0.0 (no foreground alignment) to 1.0
 * (perfect foreground alignment).  When dealing with optimizers that can
 * only minimize a metric, use the ComplementOn() method.
 *
 *
 * \ingroup RegistrationMetrics
 * \ingroup Metrics
 */

template <class TFixedImage, class TMovingImage>
class ITK_TEMPLATE_EXPORT AdvancedKappaStatisticImageToImageMetric
  : public AdvancedImageToImageMetric<TFixedImage, TMovingImage>
{
public:
  ITK_DISALLOW_COPY_AND_MOVE(AdvancedKappaStatisticImageToImageMetric);

  /** Standard class typedefs. */
  using Self = AdvancedKappaStatisticImageToImageMetric;
  using Superclass = AdvancedImageToImageMetric<TFixedImage, TMovingImage>;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** Run-time type information (and related methods). */
  itkTypeMacro(AdvancedKappaStatisticImageToImageMetric, AdvancedImageToImageMetric);

  /** Typedefs from the superclass. */
  using typename Superclass::CoordinateRepresentationType;
  using typename Superclass::MovingImageType;
  using typename Superclass::MovingImagePixelType;
  using typename Superclass::MovingImageConstPointer;
  using typename Superclass::FixedImageType;
  using typename Superclass::FixedImageConstPointer;
  using typename Superclass::FixedImageRegionType;
  using typename Superclass::TransformType;
  using typename Superclass::TransformPointer;
  using typename Superclass::InputPointType;
  using typename Superclass::OutputPointType;
  using typename Superclass::TransformParametersType;
  using typename Superclass::TransformJacobianType;
  using typename Superclass::NumberOfParametersType;
  using typename Superclass::InterpolatorType;
  using typename Superclass::InterpolatorPointer;
  using typename Superclass::RealType;
  using typename Superclass::GradientPixelType;
  using typename Superclass::GradientImageType;
  using typename Superclass::GradientImagePointer;
  using typename Superclass::FixedImageMaskType;
  using typename Superclass::FixedImageMaskPointer;
  using typename Superclass::MovingImageMaskType;
  using typename Superclass::MovingImageMaskPointer;
  using typename Superclass::MeasureType;
  using typename Superclass::DerivativeType;
  using typename Superclass::DerivativeValueType;
  using typename Superclass::ParametersType;
  using typename Superclass::FixedImagePixelType;
  using typename Superclass::MovingImageRegionType;
  using typename Superclass::ImageSamplerType;
  using typename Superclass::ImageSamplerPointer;
  using typename Superclass::ImageSampleContainerType;
  using typename Superclass::ImageSampleContainerPointer;
  using typename Superclass::FixedImageLimiterType;
  using typename Superclass::MovingImageLimiterType;
  using typename Superclass::FixedImageLimiterOutputType;
  using typename Superclass::MovingImageLimiterOutputType;
  using typename Superclass::MovingImageDerivativeScalesType;
  using typename Superclass::ThreadInfoType;

  /** The fixed image dimension. */
  itkStaticConstMacro(FixedImageDimension, unsigned int, FixedImageType::ImageDimension);

  /** The moving image dimension. */
  itkStaticConstMacro(MovingImageDimension, unsigned int, MovingImageType::ImageDimension);

  /** Get the value for single valued optimizers. */
  MeasureType
  GetValue(const TransformParametersType & parameters) const override;

  /** Get the derivatives of the match measure. */
  void
  GetDerivative(const TransformParametersType & parameters, DerivativeType & derivative) const override;

  /** Get value and derivatives for multiple valued optimizers. */
  virtual void
  GetValueAndDerivativeSingleThreaded(const TransformParametersType & parameters,
                                      MeasureType &                   Value,
                                      DerivativeType &                Derivative) const;

  void
  GetValueAndDerivative(const TransformParametersType & parameters,
                        MeasureType &                   Value,
                        DerivativeType &                Derivative) const override;

  /** Computes the moving gradient image dM/dx. */
  void
  ComputeGradient() override;

  /** This method allows the user to set the foreground value. The default value is 1.0. */
  itkSetMacro(ForegroundValue, RealType);
  itkGetConstReferenceMacro(ForegroundValue, RealType);

  /** Select which kind of kappa to compute:
   * 1) compare with a foreground value
   * 2) compare if larger than zero
   */
  itkSetMacro(UseForegroundValue, bool);

  /** Set/Get whether this metric returns 2*|A&B|/(|A|+|B|)
   * (ComplementOff, the default) or 1.0 - 2*|A&B|/(|A|+|B|)
   * (ComplementOn). When using an optimizer that minimizes
   * metric values use ComplementOn().
   */
  itkSetMacro(Complement, bool);
  itkGetConstReferenceMacro(Complement, bool);
  itkBooleanMacro(Complement);

  /** Set the precision. */
  itkSetMacro(Epsilon, RealType);
  itkGetConstReferenceMacro(Epsilon, RealType);

protected:
  AdvancedKappaStatisticImageToImageMetric();
  ~AdvancedKappaStatisticImageToImageMetric() override = default;

  /** PrintSelf. */
  void
  PrintSelf(std::ostream & os, Indent indent) const override;

  /** Protected Typedefs ******************/

  /** Typedefs inherited from superclass */
  using typename Superclass::FixedImageIndexType;
  using typename Superclass::FixedImageIndexValueType;
  using typename Superclass::MovingImageIndexType;
  using typename Superclass::FixedImagePointType;
  using typename Superclass::MovingImagePointType;
  using typename Superclass::MovingImageContinuousIndexType;
  using typename Superclass::BSplineInterpolatorType;
  using typename Superclass::MovingImageDerivativeType;
  using typename Superclass::NonZeroJacobianIndicesType;

  /** Compute a pixel's contribution to the measure and derivatives;
   * Called by GetValueAndDerivative().
   */
  void
  UpdateValueAndDerivativeTerms(const RealType                     fixedImageValue,
                                const RealType                     movingImageValue,
                                std::size_t &                      fixedForegroundArea,
                                std::size_t &                      movingForegroundArea,
                                std::size_t &                      intersection,
                                const DerivativeType &             imageJacobian,
                                const NonZeroJacobianIndicesType & nzji,
                                DerivativeType &                   sum1,
                                DerivativeType &                   sum2) const;

  /** Initialize some multi-threading related parameters.
   * Overrides function in AdvancedImageToImageMetric, because
   * here we use other parameters.
   */
  void
  InitializeThreadingParameters() const override;

  /** Get value and derivatives for each thread. */
  void
  ThreadedGetValueAndDerivative(ThreadIdType threadID) const override;

  /** Gather the values and derivatives from all threads */
  void
  AfterThreadedGetValueAndDerivative(MeasureType & value, DerivativeType & derivative) const override;

  /** AccumulateDerivatives threader callback function */
  static ITK_THREAD_RETURN_FUNCTION_CALL_CONVENTION
  AccumulateDerivativesThreaderCallback(void * arg);

private:
  bool     m_UseForegroundValue{ true }; // for backwards compatibility
  RealType m_ForegroundValue{ 1.0 };
  RealType m_Epsilon{ 1e-3 };
  bool     m_Complement{ true };

  /** Threading related parameters. */

  /** Helper structs that multi-threads the computation of
   * the metric derivative using ITK threads.
   */
  struct MultiThreaderAccumulateDerivativeType
  {
    AdvancedKappaStatisticImageToImageMetric * st_Metric;

    MeasureType           st_Coefficient1;
    MeasureType           st_Coefficient2;
    DerivativeValueType * st_DerivativePointer;
  };

  struct KappaGetValueAndDerivativePerThreadStruct
  {
    SizeValueType  st_NumberOfPixelsCounted;
    SizeValueType  st_AreaSum;
    SizeValueType  st_AreaIntersection;
    DerivativeType st_DerivativeSum1;
    DerivativeType st_DerivativeSum2;
  };
  itkPadStruct(ITK_CACHE_LINE_ALIGNMENT,
               KappaGetValueAndDerivativePerThreadStruct,
               PaddedKappaGetValueAndDerivativePerThreadStruct);
  itkAlignedTypedef(ITK_CACHE_LINE_ALIGNMENT,
                    PaddedKappaGetValueAndDerivativePerThreadStruct,
                    AlignedKappaGetValueAndDerivativePerThreadStruct);
  mutable std::vector<AlignedKappaGetValueAndDerivativePerThreadStruct>
    m_KappaGetValueAndDerivativePerThreadVariables{};
};

} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#  include "itkAdvancedKappaStatisticImageToImageMetric.hxx"
#endif

#endif // end #ifndef itkAdvancedKappaStatisticImageToImageMetric_h