File: itkAdvancedMeanSquaresImageToImageMetric.h

package info (click to toggle)
elastix 5.2.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 42,480 kB
  • sloc: cpp: 68,403; lisp: 4,118; python: 1,013; xml: 182; sh: 177; makefile: 33
file content (214 lines) | stat: -rw-r--r-- 9,089 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
/*=========================================================================
 *
 *  Copyright UMC Utrecht and contributors
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *        http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkAdvancedMeanSquaresImageToImageMetric_h
#define itkAdvancedMeanSquaresImageToImageMetric_h

#include "itkAdvancedImageToImageMetric.h"

namespace itk
{

/** \class AdvancedMeanSquaresImageToImageMetric
 * \brief Compute Mean square difference between two images, based on AdvancedImageToImageMetric...
 *
 * This Class is templated over the type of the fixed and moving
 * images to be compared.
 *
 * This metric computes the sum of squared differenced between pixels in
 * the moving image and pixels in the fixed image. The spatial correspondance
 * between both images is established through a Transform. Pixel values are
 * taken from the Moving image. Their positions are mapped to the Fixed image
 * and result in general in non-grid position on it. Values at these non-grid
 * position of the Fixed image are interpolated using a user-selected Interpolator.
 *
 * This implementation of the MeanSquareDifference is based on the
 * AdvancedImageToImageMetric, which means that:
 * \li It uses the ImageSampler-framework
 * \li It makes use of the compact support of B-splines, in case of B-spline transforms.
 * \li Image derivatives are computed using either the B-spline interpolator's implementation
 * or by nearest neighbor interpolation of a precomputed central difference image.
 * \li A minimum number of samples that should map within the moving image (mask) can be specified.
 *
 * \ingroup RegistrationMetrics
 * \ingroup Metrics
 */

template <class TFixedImage, class TMovingImage>
class ITK_TEMPLATE_EXPORT AdvancedMeanSquaresImageToImageMetric
  : public AdvancedImageToImageMetric<TFixedImage, TMovingImage>
{
public:
  ITK_DISALLOW_COPY_AND_MOVE(AdvancedMeanSquaresImageToImageMetric);

  /** Standard class typedefs. */
  using Self = AdvancedMeanSquaresImageToImageMetric;
  using Superclass = AdvancedImageToImageMetric<TFixedImage, TMovingImage>;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** Run-time type information (and related methods). */
  itkTypeMacro(AdvancedMeanSquaresImageToImageMetric, AdvancedImageToImageMetric);

  /** Typedefs from the superclass. */
  using typename Superclass::CoordinateRepresentationType;
  using typename Superclass::MovingImageType;
  using typename Superclass::MovingImagePixelType;
  using typename Superclass::MovingImageConstPointer;
  using typename Superclass::FixedImageType;
  using typename Superclass::FixedImageConstPointer;
  using typename Superclass::FixedImageRegionType;
  using typename Superclass::TransformType;
  using typename Superclass::TransformPointer;
  using typename Superclass::InputPointType;
  using typename Superclass::OutputPointType;
  using typename Superclass::TransformParametersType;
  using typename Superclass::TransformJacobianType;
  using typename Superclass::NumberOfParametersType;
  using typename Superclass::InterpolatorType;
  using typename Superclass::InterpolatorPointer;
  using typename Superclass::RealType;
  using typename Superclass::GradientPixelType;
  using typename Superclass::GradientImageType;
  using typename Superclass::GradientImagePointer;
  using typename Superclass::FixedImageMaskType;
  using typename Superclass::FixedImageMaskPointer;
  using typename Superclass::MovingImageMaskType;
  using typename Superclass::MovingImageMaskPointer;
  using typename Superclass::MeasureType;
  using typename Superclass::DerivativeType;
  using typename Superclass::DerivativeValueType;
  using typename Superclass::ParametersType;
  using typename Superclass::FixedImagePixelType;
  using typename Superclass::MovingImageRegionType;
  using typename Superclass::ImageSamplerType;
  using typename Superclass::ImageSamplerPointer;
  using typename Superclass::ImageSampleContainerType;
  using typename Superclass::ImageSampleContainerPointer;
  using typename Superclass::FixedImageLimiterType;
  using typename Superclass::MovingImageLimiterType;
  using typename Superclass::FixedImageLimiterOutputType;
  using typename Superclass::MovingImageLimiterOutputType;
  using typename Superclass::MovingImageDerivativeScalesType;
  using typename Superclass::ThreadInfoType;

  /** The fixed image dimension. */
  itkStaticConstMacro(FixedImageDimension, unsigned int, FixedImageType::ImageDimension);

  /** The moving image dimension. */
  itkStaticConstMacro(MovingImageDimension, unsigned int, MovingImageType::ImageDimension);

  /** Get the value for single valued optimizers. */
  virtual MeasureType
  GetValueSingleThreaded(const TransformParametersType & parameters) const;

  MeasureType
  GetValue(const TransformParametersType & parameters) const override;

  /** Get the derivatives of the match measure. */
  void
  GetDerivative(const TransformParametersType & parameters, DerivativeType & derivative) const override;

  /** Get value and derivative. */
  void
  GetValueAndDerivativeSingleThreaded(const TransformParametersType & parameters,
                                      MeasureType &                   value,
                                      DerivativeType &                derivative) const;

  void
  GetValueAndDerivative(const TransformParametersType & parameters,
                        MeasureType &                   value,
                        DerivativeType &                derivative) const override;

  /** Initialize the Metric by making sure that all the components
   *  are present and plugged together correctly.
   * \li Call the superclass' implementation
   * \li Estimate the normalization factor, if asked for.  */
  void
  Initialize() override;

  /** Set/Get whether to normalize the mean squares measure.
   * This divides the MeanSquares by a factor (range/10)^2,
   * where range represents the maximum gray value range of the
   * images. Based on the ad hoc assumption that range/10 is the
   * maximum average difference that will be observed.
   * Dividing by range^2 sounds less ad hoc, but will yield
   * very small values. */
  itkSetMacro(UseNormalization, bool);
  itkGetConstMacro(UseNormalization, bool);

protected:
  AdvancedMeanSquaresImageToImageMetric();
  ~AdvancedMeanSquaresImageToImageMetric() override = default;

  void
  PrintSelf(std::ostream & os, Indent indent) const override;

  /** Protected Typedefs ******************/

  /** Typedefs inherited from superclass */
  using typename Superclass::FixedImageIndexType;
  using typename Superclass::FixedImageIndexValueType;
  using typename Superclass::MovingImageIndexType;
  using typename Superclass::FixedImagePointType;
  using typename Superclass::MovingImagePointType;
  using typename Superclass::MovingImageContinuousIndexType;
  using typename Superclass::BSplineInterpolatorType;
  using typename Superclass::MovingImageDerivativeType;
  using typename Superclass::NonZeroJacobianIndicesType;

  /** Compute a pixel's contribution to the measure and derivatives;
   * Called by GetValueAndDerivative(). */
  void
  UpdateValueAndDerivativeTerms(const RealType                     fixedImageValue,
                                const RealType                     movingImageValue,
                                const DerivativeType &             imageJacobian,
                                const NonZeroJacobianIndicesType & nzji,
                                MeasureType &                      measure,
                                DerivativeType &                   deriv) const;

  /** Get value for each thread. */
  void
  ThreadedGetValue(ThreadIdType threadID) const override;

  /** Gather the values from all threads. */
  void
  AfterThreadedGetValue(MeasureType & value) const override;

  /** Get value and derivatives for each thread. */
  void
  ThreadedGetValueAndDerivative(ThreadIdType threadID) const override;

  /** Gather the values and derivatives from all threads. */
  void
  AfterThreadedGetValueAndDerivative(MeasureType & value, DerivativeType & derivative) const override;

private:
  double m_NormalizationFactor{ 1.0 };
  bool   m_UseNormalization{ false };
};

} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#  include "itkAdvancedMeanSquaresImageToImageMetric.hxx"
#endif

#endif // end #ifndef itkAdvancedMeanSquaresImageToImageMetric_h