1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
|
/*=========================================================================
*
* Copyright UMC Utrecht and contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkAdvancedMeanSquaresImageToImageMetric_h
#define itkAdvancedMeanSquaresImageToImageMetric_h
#include "itkAdvancedImageToImageMetric.h"
namespace itk
{
/** \class AdvancedMeanSquaresImageToImageMetric
* \brief Compute Mean square difference between two images, based on AdvancedImageToImageMetric...
*
* This Class is templated over the type of the fixed and moving
* images to be compared.
*
* This metric computes the sum of squared differenced between pixels in
* the moving image and pixels in the fixed image. The spatial correspondance
* between both images is established through a Transform. Pixel values are
* taken from the Moving image. Their positions are mapped to the Fixed image
* and result in general in non-grid position on it. Values at these non-grid
* position of the Fixed image are interpolated using a user-selected Interpolator.
*
* This implementation of the MeanSquareDifference is based on the
* AdvancedImageToImageMetric, which means that:
* \li It uses the ImageSampler-framework
* \li It makes use of the compact support of B-splines, in case of B-spline transforms.
* \li Image derivatives are computed using either the B-spline interpolator's implementation
* or by nearest neighbor interpolation of a precomputed central difference image.
* \li A minimum number of samples that should map within the moving image (mask) can be specified.
*
* \ingroup RegistrationMetrics
* \ingroup Metrics
*/
template <class TFixedImage, class TMovingImage>
class ITK_TEMPLATE_EXPORT AdvancedMeanSquaresImageToImageMetric
: public AdvancedImageToImageMetric<TFixedImage, TMovingImage>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(AdvancedMeanSquaresImageToImageMetric);
/** Standard class typedefs. */
using Self = AdvancedMeanSquaresImageToImageMetric;
using Superclass = AdvancedImageToImageMetric<TFixedImage, TMovingImage>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro(AdvancedMeanSquaresImageToImageMetric, AdvancedImageToImageMetric);
/** Typedefs from the superclass. */
using typename Superclass::CoordinateRepresentationType;
using typename Superclass::MovingImageType;
using typename Superclass::MovingImagePixelType;
using typename Superclass::MovingImageConstPointer;
using typename Superclass::FixedImageType;
using typename Superclass::FixedImageConstPointer;
using typename Superclass::FixedImageRegionType;
using typename Superclass::TransformType;
using typename Superclass::TransformPointer;
using typename Superclass::InputPointType;
using typename Superclass::OutputPointType;
using typename Superclass::TransformParametersType;
using typename Superclass::TransformJacobianType;
using typename Superclass::NumberOfParametersType;
using typename Superclass::InterpolatorType;
using typename Superclass::InterpolatorPointer;
using typename Superclass::RealType;
using typename Superclass::GradientPixelType;
using typename Superclass::GradientImageType;
using typename Superclass::GradientImagePointer;
using typename Superclass::FixedImageMaskType;
using typename Superclass::FixedImageMaskPointer;
using typename Superclass::MovingImageMaskType;
using typename Superclass::MovingImageMaskPointer;
using typename Superclass::MeasureType;
using typename Superclass::DerivativeType;
using typename Superclass::DerivativeValueType;
using typename Superclass::ParametersType;
using typename Superclass::FixedImagePixelType;
using typename Superclass::MovingImageRegionType;
using typename Superclass::ImageSamplerType;
using typename Superclass::ImageSamplerPointer;
using typename Superclass::ImageSampleContainerType;
using typename Superclass::ImageSampleContainerPointer;
using typename Superclass::FixedImageLimiterType;
using typename Superclass::MovingImageLimiterType;
using typename Superclass::FixedImageLimiterOutputType;
using typename Superclass::MovingImageLimiterOutputType;
using typename Superclass::MovingImageDerivativeScalesType;
using typename Superclass::ThreadInfoType;
/** The fixed image dimension. */
itkStaticConstMacro(FixedImageDimension, unsigned int, FixedImageType::ImageDimension);
/** The moving image dimension. */
itkStaticConstMacro(MovingImageDimension, unsigned int, MovingImageType::ImageDimension);
/** Get the value for single valued optimizers. */
virtual MeasureType
GetValueSingleThreaded(const TransformParametersType & parameters) const;
MeasureType
GetValue(const TransformParametersType & parameters) const override;
/** Get the derivatives of the match measure. */
void
GetDerivative(const TransformParametersType & parameters, DerivativeType & derivative) const override;
/** Get value and derivative. */
void
GetValueAndDerivativeSingleThreaded(const TransformParametersType & parameters,
MeasureType & value,
DerivativeType & derivative) const;
void
GetValueAndDerivative(const TransformParametersType & parameters,
MeasureType & value,
DerivativeType & derivative) const override;
/** Initialize the Metric by making sure that all the components
* are present and plugged together correctly.
* \li Call the superclass' implementation
* \li Estimate the normalization factor, if asked for. */
void
Initialize() override;
/** Set/Get whether to normalize the mean squares measure.
* This divides the MeanSquares by a factor (range/10)^2,
* where range represents the maximum gray value range of the
* images. Based on the ad hoc assumption that range/10 is the
* maximum average difference that will be observed.
* Dividing by range^2 sounds less ad hoc, but will yield
* very small values. */
itkSetMacro(UseNormalization, bool);
itkGetConstMacro(UseNormalization, bool);
protected:
AdvancedMeanSquaresImageToImageMetric();
~AdvancedMeanSquaresImageToImageMetric() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override;
/** Protected Typedefs ******************/
/** Typedefs inherited from superclass */
using typename Superclass::FixedImageIndexType;
using typename Superclass::FixedImageIndexValueType;
using typename Superclass::MovingImageIndexType;
using typename Superclass::FixedImagePointType;
using typename Superclass::MovingImagePointType;
using typename Superclass::MovingImageContinuousIndexType;
using typename Superclass::BSplineInterpolatorType;
using typename Superclass::MovingImageDerivativeType;
using typename Superclass::NonZeroJacobianIndicesType;
/** Compute a pixel's contribution to the measure and derivatives;
* Called by GetValueAndDerivative(). */
void
UpdateValueAndDerivativeTerms(const RealType fixedImageValue,
const RealType movingImageValue,
const DerivativeType & imageJacobian,
const NonZeroJacobianIndicesType & nzji,
MeasureType & measure,
DerivativeType & deriv) const;
/** Get value for each thread. */
void
ThreadedGetValue(ThreadIdType threadID) const override;
/** Gather the values from all threads. */
void
AfterThreadedGetValue(MeasureType & value) const override;
/** Get value and derivatives for each thread. */
void
ThreadedGetValueAndDerivative(ThreadIdType threadID) const override;
/** Gather the values and derivatives from all threads. */
void
AfterThreadedGetValueAndDerivative(MeasureType & value, DerivativeType & derivative) const override;
private:
double m_NormalizationFactor{ 1.0 };
bool m_UseNormalization{ false };
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkAdvancedMeanSquaresImageToImageMetric.hxx"
#endif
#endif // end #ifndef itkAdvancedMeanSquaresImageToImageMetric_h
|