1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
/*=========================================================================
*
* Copyright UMC Utrecht and contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkAdvancedNormalizedCorrelationImageToImageMetric_h
#define itkAdvancedNormalizedCorrelationImageToImageMetric_h
#include "itkAdvancedImageToImageMetric.h"
#include <vector>
namespace itk
{
/** \class AdvancedNormalizedCorrelationImageToImageMetric
* \brief Computes normalized correlation between two images, based on AdvancedImageToImageMetric...
*
* This metric computes the correlation between pixels in the fixed image
* and pixels in the moving image. The spatial correspondence between
* fixed and moving image is established through a Transform. Pixel values are
* taken from the fixed image, their positions are mapped to the moving
* image and result in general in non-grid position on it. Values at these
* non-grid position of the moving image are interpolated using a user-selected
* Interpolator. The correlation is normalized by the autocorrelations of both
* the fixed and moving images.
*
* This implementation of the NormalizedCorrelation is based on the
* AdvancedImageToImageMetric, which means that:
* \li It uses the ImageSampler-framework
* \li It makes use of the compact support of B-splines, in case of B-spline transforms.
* \li Image derivatives are computed using either the B-spline interpolator's implementation
* or by nearest neighbor interpolation of a precomputed central difference image.
* \li A minimum number of samples that should map within the moving image (mask) can be specified.
*
* The normalized correlation NC is defined as:
*
* \f[
* \mathrm{NC} = \frac{\sum_x f(x) * m(x+u(x,p))}{\sqrt{ \sum_x f(x)^2 * \sum_x m(x+u(x,p))^2}}
* = \frac{\mathtt{sfm}}{\sqrt{\mathtt{sff} * \mathtt{smm}}}
* \f]
*
* where x a voxel in the fixed image f, m the moving image, u(x,p) the
* deformation of x depending on the transform parameters p. sfm, sff and smm
* is notation used in the source code. The derivative of NC to p equals:
* \f[
* \frac{\partial \mathrm{NC}}{\partial p} = \frac{\partial \mathrm{NC}}{\partial m}
* \frac{\partial m}{\partial x} \frac{\partial x}{\partial p}
* = \frac{\partial \mathrm{NC}}{\partial m} * \mathtt{gradient} * \mathtt{jacobian},
* \f]
* where gradient is the derivative of the moving image m to x, and where Jacobian is the
* derivative of the transformation to its parameters. gradient * Jacobian is called the differential.
* This yields for the derivative:
*
* \f[
* \frac{\partial \mathrm{NC}}{\partial p}
* = \frac{\sum_x[ f(x) * \mathtt{differential} ] - ( \mathtt{sfm} / \mathtt{smm} )
* * \sum_x[ m(x+u(x,p)) * \mathtt{differential} ]}{\sqrt{\mathtt{sff} * \mathtt{smm}}}
* \f]
*
* This class has an option to subtract the sample mean from the sample values
* in the cross correlation formula. This typically results in narrower valleys
* in the cost function NC. The default value is false. If SubtractMean is true,
* the NC is defined as:
*
* \f[
* \mathrm{NC} = \frac{\sum_x ( f(x) - \mathtt{Af} ) * ( m(x+u(x,p)) - \mathtt{Am})}
* {\sqrt{\sum_x (f(x) - \mathtt{Af})^2 * \sum_x (m(x+u(x,p)) - \mathtt{Am})^2}}
* = \frac{\mathtt{sfm} - \mathtt{sf} * \mathtt{sm} / N}
* {\sqrt{(\mathtt{sff} - \mathtt{sf} * \mathtt{sf} / N) * (\mathtt{smm} - \mathtt{sm} *\mathtt{sm} / N)}},
* \f]
*
* where Af and Am are the average of f and m, respectively.
*
*
* \ingroup RegistrationMetrics
* \ingroup Metrics
*/
template <class TFixedImage, class TMovingImage>
class ITK_TEMPLATE_EXPORT AdvancedNormalizedCorrelationImageToImageMetric
: public AdvancedImageToImageMetric<TFixedImage, TMovingImage>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(AdvancedNormalizedCorrelationImageToImageMetric);
/** Standard class typedefs. */
using Self = AdvancedNormalizedCorrelationImageToImageMetric;
using Superclass = AdvancedImageToImageMetric<TFixedImage, TMovingImage>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro(AdvancedNormalizedCorrelationImageToImageMetric, AdvancedImageToImageMetric);
/** Typedefs from the superclass. */
using typename Superclass::CoordinateRepresentationType;
using typename Superclass::MovingImageType;
using typename Superclass::MovingImagePixelType;
using typename Superclass::MovingImageConstPointer;
using typename Superclass::FixedImageType;
using typename Superclass::FixedImageConstPointer;
using typename Superclass::FixedImageRegionType;
using typename Superclass::TransformType;
using typename Superclass::TransformPointer;
using typename Superclass::InputPointType;
using typename Superclass::OutputPointType;
using typename Superclass::TransformParametersType;
using typename Superclass::TransformJacobianType;
using typename Superclass::NumberOfParametersType;
using typename Superclass::InterpolatorType;
using typename Superclass::InterpolatorPointer;
using typename Superclass::RealType;
using typename Superclass::GradientPixelType;
using typename Superclass::GradientImageType;
using typename Superclass::GradientImagePointer;
using typename Superclass::FixedImageMaskType;
using typename Superclass::FixedImageMaskPointer;
using typename Superclass::MovingImageMaskType;
using typename Superclass::MovingImageMaskPointer;
using typename Superclass::MeasureType;
using typename Superclass::DerivativeType;
using typename Superclass::DerivativeValueType;
using typename Superclass::ParametersType;
using typename Superclass::FixedImagePixelType;
using typename Superclass::MovingImageRegionType;
using typename Superclass::ImageSamplerType;
using typename Superclass::ImageSamplerPointer;
using typename Superclass::ImageSampleContainerType;
using typename Superclass::ImageSampleContainerPointer;
using typename Superclass::FixedImageLimiterType;
using typename Superclass::MovingImageLimiterType;
using typename Superclass::FixedImageLimiterOutputType;
using typename Superclass::MovingImageLimiterOutputType;
using typename Superclass::MovingImageDerivativeScalesType;
using typename Superclass::ThreadInfoType;
/** The fixed image dimension. */
itkStaticConstMacro(FixedImageDimension, unsigned int, FixedImageType::ImageDimension);
/** The moving image dimension. */
itkStaticConstMacro(MovingImageDimension, unsigned int, MovingImageType::ImageDimension);
/** Get the value for single valued optimizers. */
MeasureType
GetValue(const TransformParametersType & parameters) const override;
/** Get the derivatives of the match measure. */
void
GetDerivative(const TransformParametersType & parameters, DerivativeType & derivative) const override;
/** Get value and derivatives for multiple valued optimizers. */
void
GetValueAndDerivativeSingleThreaded(const TransformParametersType & parameters,
MeasureType & value,
DerivativeType & derivative) const;
void
GetValueAndDerivative(const TransformParametersType & parameters,
MeasureType & value,
DerivativeType & derivative) const override;
protected:
AdvancedNormalizedCorrelationImageToImageMetric();
~AdvancedNormalizedCorrelationImageToImageMetric() override = default;
using Superclass::PrintSelf;
/** Protected Typedefs ******************/
/** Typedefs inherited from superclass */
using typename Superclass::FixedImageIndexType;
using typename Superclass::FixedImageIndexValueType;
using typename Superclass::MovingImageIndexType;
using typename Superclass::FixedImagePointType;
using typename Superclass::MovingImagePointType;
using typename Superclass::MovingImageContinuousIndexType;
using typename Superclass::BSplineInterpolatorType;
using typename Superclass::MovingImageDerivativeType;
using typename Superclass::NonZeroJacobianIndicesType;
/** Compute a pixel's contribution to the derivative terms;
* Called by GetValueAndDerivative().
*/
void
UpdateDerivativeTerms(const RealType fixedImageValue,
const RealType movingImageValue,
const DerivativeType & imageJacobian,
const NonZeroJacobianIndicesType & nzji,
DerivativeType & derivativeF,
DerivativeType & derivativeM,
DerivativeType & differential) const;
/** Initialize some multi-threading related parameters.
* Overrides function in AdvancedImageToImageMetric, because
* here we use other parameters.
*/
void
InitializeThreadingParameters() const override;
/** Get value and derivatives for each thread. */
void
ThreadedGetValueAndDerivative(ThreadIdType threadID) const override;
/** Gather the values and derivatives from all threads */
void
AfterThreadedGetValueAndDerivative(MeasureType & value, DerivativeType & derivative) const override;
/** AccumulateDerivatives threader callback function */
static ITK_THREAD_RETURN_FUNCTION_CALL_CONVENTION
AccumulateDerivativesThreaderCallback(void * arg);
private:
using AccumulateType = typename NumericTraits<MeasureType>::AccumulateType;
/** Helper structs that multi-threads the computation of
* the metric derivative using ITK threads.
*/
struct MultiThreaderAccumulateDerivativeType
{
AdvancedNormalizedCorrelationImageToImageMetric * st_Metric;
AccumulateType st_sf_N;
AccumulateType st_sm_N;
AccumulateType st_sfm_smm;
RealType st_InvertedDenominator;
DerivativeValueType * st_DerivativePointer;
};
struct CorrelationGetValueAndDerivativePerThreadStruct
{
SizeValueType st_NumberOfPixelsCounted;
AccumulateType st_Sff;
AccumulateType st_Smm;
AccumulateType st_Sfm;
AccumulateType st_Sf;
AccumulateType st_Sm;
DerivativeType st_DerivativeF;
DerivativeType st_DerivativeM;
DerivativeType st_Differential;
};
itkPadStruct(ITK_CACHE_LINE_ALIGNMENT,
CorrelationGetValueAndDerivativePerThreadStruct,
PaddedCorrelationGetValueAndDerivativePerThreadStruct);
itkAlignedTypedef(ITK_CACHE_LINE_ALIGNMENT,
PaddedCorrelationGetValueAndDerivativePerThreadStruct,
AlignedCorrelationGetValueAndDerivativePerThreadStruct);
mutable std::vector<AlignedCorrelationGetValueAndDerivativePerThreadStruct>
m_CorrelationGetValueAndDerivativePerThreadVariables;
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkAdvancedNormalizedCorrelationImageToImageMetric.hxx"
#endif
#endif // end #ifndef itkAdvancedNormalizedCorrelationImageToImageMetric_h
|