File: itkAdvancedNormalizedCorrelationImageToImageMetric.h

package info (click to toggle)
elastix 5.2.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 42,480 kB
  • sloc: cpp: 68,403; lisp: 4,118; python: 1,013; xml: 182; sh: 177; makefile: 33
file content (271 lines) | stat: -rw-r--r-- 11,755 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
/*=========================================================================
 *
 *  Copyright UMC Utrecht and contributors
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *        http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkAdvancedNormalizedCorrelationImageToImageMetric_h
#define itkAdvancedNormalizedCorrelationImageToImageMetric_h

#include "itkAdvancedImageToImageMetric.h"
#include <vector>

namespace itk
{
/** \class AdvancedNormalizedCorrelationImageToImageMetric
 * \brief Computes normalized correlation between two images, based on AdvancedImageToImageMetric...
 *
 * This metric computes the correlation between pixels in the fixed image
 * and pixels in the moving image. The spatial correspondence between
 * fixed and moving image is established through a Transform. Pixel values are
 * taken from the fixed image, their positions are mapped to the moving
 * image and result in general in non-grid position on it. Values at these
 * non-grid position of the moving image are interpolated using a user-selected
 * Interpolator. The correlation is normalized by the autocorrelations of both
 * the fixed and moving images.
 *
 * This implementation of the NormalizedCorrelation is based on the
 * AdvancedImageToImageMetric, which means that:
 * \li It uses the ImageSampler-framework
 * \li It makes use of the compact support of B-splines, in case of B-spline transforms.
 * \li Image derivatives are computed using either the B-spline interpolator's implementation
 * or by nearest neighbor interpolation of a precomputed central difference image.
 * \li A minimum number of samples that should map within the moving image (mask) can be specified.
 *
 * The normalized correlation NC is defined as:
 *
 * \f[
 * \mathrm{NC} = \frac{\sum_x f(x) * m(x+u(x,p))}{\sqrt{ \sum_x f(x)^2 * \sum_x m(x+u(x,p))^2}}
 *    = \frac{\mathtt{sfm}}{\sqrt{\mathtt{sff} * \mathtt{smm}}}
 * \f]
 *
 * where x a voxel in the fixed image f, m the moving image, u(x,p) the
 * deformation of x depending on the transform parameters p. sfm, sff and smm
 * is notation used in the source code. The derivative of NC to p equals:
 * \f[
 *   \frac{\partial \mathrm{NC}}{\partial p} = \frac{\partial \mathrm{NC}}{\partial m}
 *     \frac{\partial m}{\partial x} \frac{\partial x}{\partial p}
 *     = \frac{\partial \mathrm{NC}}{\partial m} * \mathtt{gradient} * \mathtt{jacobian},
 * \f]
 * where gradient is the derivative of the moving image m to x, and where Jacobian is the
 * derivative of the transformation to its parameters. gradient * Jacobian is called the differential.
 * This yields for the derivative:
 *
 * \f[
 *   \frac{\partial \mathrm{NC}}{\partial p}
 *     = \frac{\sum_x[ f(x) * \mathtt{differential} ] - ( \mathtt{sfm} / \mathtt{smm} )
 *     * \sum_x[ m(x+u(x,p)) * \mathtt{differential} ]}{\sqrt{\mathtt{sff} * \mathtt{smm}}}
 * \f]
 *
 * This class has an option to subtract the sample mean from the sample values
 * in the cross correlation formula. This typically results in narrower valleys
 * in the cost function NC. The default value is false. If SubtractMean is true,
 * the NC is defined as:
 *
 * \f[
 * \mathrm{NC} = \frac{\sum_x ( f(x) - \mathtt{Af} ) * ( m(x+u(x,p)) - \mathtt{Am})}
 *     {\sqrt{\sum_x (f(x) - \mathtt{Af})^2 * \sum_x (m(x+u(x,p)) - \mathtt{Am})^2}}
 *    = \frac{\mathtt{sfm} - \mathtt{sf} * \mathtt{sm} / N}
 *   {\sqrt{(\mathtt{sff} - \mathtt{sf} * \mathtt{sf} / N) * (\mathtt{smm} - \mathtt{sm} *\mathtt{sm} / N)}},
 * \f]
 *
 * where Af and Am are the average of f and m, respectively.
 *
 *
 * \ingroup RegistrationMetrics
 * \ingroup Metrics
 */

template <class TFixedImage, class TMovingImage>
class ITK_TEMPLATE_EXPORT AdvancedNormalizedCorrelationImageToImageMetric
  : public AdvancedImageToImageMetric<TFixedImage, TMovingImage>
{
public:
  ITK_DISALLOW_COPY_AND_MOVE(AdvancedNormalizedCorrelationImageToImageMetric);

  /** Standard class typedefs. */
  using Self = AdvancedNormalizedCorrelationImageToImageMetric;
  using Superclass = AdvancedImageToImageMetric<TFixedImage, TMovingImage>;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** Run-time type information (and related methods). */
  itkTypeMacro(AdvancedNormalizedCorrelationImageToImageMetric, AdvancedImageToImageMetric);

  /** Typedefs from the superclass. */
  using typename Superclass::CoordinateRepresentationType;
  using typename Superclass::MovingImageType;
  using typename Superclass::MovingImagePixelType;
  using typename Superclass::MovingImageConstPointer;
  using typename Superclass::FixedImageType;
  using typename Superclass::FixedImageConstPointer;
  using typename Superclass::FixedImageRegionType;
  using typename Superclass::TransformType;
  using typename Superclass::TransformPointer;
  using typename Superclass::InputPointType;
  using typename Superclass::OutputPointType;
  using typename Superclass::TransformParametersType;
  using typename Superclass::TransformJacobianType;
  using typename Superclass::NumberOfParametersType;
  using typename Superclass::InterpolatorType;
  using typename Superclass::InterpolatorPointer;
  using typename Superclass::RealType;
  using typename Superclass::GradientPixelType;
  using typename Superclass::GradientImageType;
  using typename Superclass::GradientImagePointer;
  using typename Superclass::FixedImageMaskType;
  using typename Superclass::FixedImageMaskPointer;
  using typename Superclass::MovingImageMaskType;
  using typename Superclass::MovingImageMaskPointer;
  using typename Superclass::MeasureType;
  using typename Superclass::DerivativeType;
  using typename Superclass::DerivativeValueType;
  using typename Superclass::ParametersType;
  using typename Superclass::FixedImagePixelType;
  using typename Superclass::MovingImageRegionType;
  using typename Superclass::ImageSamplerType;
  using typename Superclass::ImageSamplerPointer;
  using typename Superclass::ImageSampleContainerType;
  using typename Superclass::ImageSampleContainerPointer;
  using typename Superclass::FixedImageLimiterType;
  using typename Superclass::MovingImageLimiterType;
  using typename Superclass::FixedImageLimiterOutputType;
  using typename Superclass::MovingImageLimiterOutputType;
  using typename Superclass::MovingImageDerivativeScalesType;
  using typename Superclass::ThreadInfoType;

  /** The fixed image dimension. */
  itkStaticConstMacro(FixedImageDimension, unsigned int, FixedImageType::ImageDimension);

  /** The moving image dimension. */
  itkStaticConstMacro(MovingImageDimension, unsigned int, MovingImageType::ImageDimension);

  /** Get the value for single valued optimizers. */
  MeasureType
  GetValue(const TransformParametersType & parameters) const override;

  /** Get the derivatives of the match measure. */
  void
  GetDerivative(const TransformParametersType & parameters, DerivativeType & derivative) const override;

  /** Get value and derivatives for multiple valued optimizers. */
  void
  GetValueAndDerivativeSingleThreaded(const TransformParametersType & parameters,
                                      MeasureType &                   value,
                                      DerivativeType &                derivative) const;

  void
  GetValueAndDerivative(const TransformParametersType & parameters,
                        MeasureType &                   value,
                        DerivativeType &                derivative) const override;

protected:
  AdvancedNormalizedCorrelationImageToImageMetric();
  ~AdvancedNormalizedCorrelationImageToImageMetric() override = default;

  using Superclass::PrintSelf;

  /** Protected Typedefs ******************/

  /** Typedefs inherited from superclass */
  using typename Superclass::FixedImageIndexType;
  using typename Superclass::FixedImageIndexValueType;
  using typename Superclass::MovingImageIndexType;
  using typename Superclass::FixedImagePointType;
  using typename Superclass::MovingImagePointType;
  using typename Superclass::MovingImageContinuousIndexType;
  using typename Superclass::BSplineInterpolatorType;
  using typename Superclass::MovingImageDerivativeType;
  using typename Superclass::NonZeroJacobianIndicesType;

  /** Compute a pixel's contribution to the derivative terms;
   * Called by GetValueAndDerivative().
   */
  void
  UpdateDerivativeTerms(const RealType                     fixedImageValue,
                        const RealType                     movingImageValue,
                        const DerivativeType &             imageJacobian,
                        const NonZeroJacobianIndicesType & nzji,
                        DerivativeType &                   derivativeF,
                        DerivativeType &                   derivativeM,
                        DerivativeType &                   differential) const;

  /** Initialize some multi-threading related parameters.
   * Overrides function in AdvancedImageToImageMetric, because
   * here we use other parameters.
   */
  void
  InitializeThreadingParameters() const override;

  /** Get value and derivatives for each thread. */
  void
  ThreadedGetValueAndDerivative(ThreadIdType threadID) const override;

  /** Gather the values and derivatives from all threads */
  void
  AfterThreadedGetValueAndDerivative(MeasureType & value, DerivativeType & derivative) const override;

  /** AccumulateDerivatives threader callback function */
  static ITK_THREAD_RETURN_FUNCTION_CALL_CONVENTION
  AccumulateDerivativesThreaderCallback(void * arg);

private:
  using AccumulateType = typename NumericTraits<MeasureType>::AccumulateType;

  /** Helper structs that multi-threads the computation of
   * the metric derivative using ITK threads.
   */
  struct MultiThreaderAccumulateDerivativeType
  {
    AdvancedNormalizedCorrelationImageToImageMetric * st_Metric;

    AccumulateType        st_sf_N;
    AccumulateType        st_sm_N;
    AccumulateType        st_sfm_smm;
    RealType              st_InvertedDenominator;
    DerivativeValueType * st_DerivativePointer;
  };

  struct CorrelationGetValueAndDerivativePerThreadStruct
  {
    SizeValueType  st_NumberOfPixelsCounted;
    AccumulateType st_Sff;
    AccumulateType st_Smm;
    AccumulateType st_Sfm;
    AccumulateType st_Sf;
    AccumulateType st_Sm;
    DerivativeType st_DerivativeF;
    DerivativeType st_DerivativeM;
    DerivativeType st_Differential;
  };
  itkPadStruct(ITK_CACHE_LINE_ALIGNMENT,
               CorrelationGetValueAndDerivativePerThreadStruct,
               PaddedCorrelationGetValueAndDerivativePerThreadStruct);
  itkAlignedTypedef(ITK_CACHE_LINE_ALIGNMENT,
                    PaddedCorrelationGetValueAndDerivativePerThreadStruct,
                    AlignedCorrelationGetValueAndDerivativePerThreadStruct);
  mutable std::vector<AlignedCorrelationGetValueAndDerivativePerThreadStruct>
    m_CorrelationGetValueAndDerivativePerThreadVariables;
};

} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#  include "itkAdvancedNormalizedCorrelationImageToImageMetric.hxx"
#endif

#endif // end #ifndef itkAdvancedNormalizedCorrelationImageToImageMetric_h