1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
|
/*=========================================================================
*
* Copyright UMC Utrecht and contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef _itkAdvancedNormalizedCorrelationImageToImageMetric_hxx
#define _itkAdvancedNormalizedCorrelationImageToImageMetric_hxx
#include "itkAdvancedNormalizedCorrelationImageToImageMetric.h"
#include <algorithm> // For min.
#include <cassert>
namespace itk
{
/**
* ******************* Constructor *******************
*/
template <class TFixedImage, class TMovingImage>
AdvancedNormalizedCorrelationImageToImageMetric<TFixedImage,
TMovingImage>::AdvancedNormalizedCorrelationImageToImageMetric()
{
this->SetUseImageSampler(true);
this->SetUseFixedImageLimiter(false);
this->SetUseMovingImageLimiter(false);
} // end Constructor
/**
* ******************* InitializeThreadingParameters *******************
*/
template <class TFixedImage, class TMovingImage>
void
AdvancedNormalizedCorrelationImageToImageMetric<TFixedImage, TMovingImage>::InitializeThreadingParameters() const
{
const ThreadIdType numberOfThreads = Self::GetNumberOfWorkUnits();
/** Resize and initialize the threading related parameters.
* The SetSize() functions do not resize the data when this is not
* needed, which saves valuable re-allocation time.
* Filling the potentially large vectors is performed later, in each thread,
* which has performance benefits for larger vector sizes.
*/
/** Only resize the array of structs when needed. */
m_CorrelationGetValueAndDerivativePerThreadVariables.resize(numberOfThreads);
/** Some initialization. */
const auto numberOfParameters = this->GetNumberOfParameters();
for (auto & perThreadVariable : m_CorrelationGetValueAndDerivativePerThreadVariables)
{
perThreadVariable.st_NumberOfPixelsCounted = SizeValueType{};
perThreadVariable.st_Sff = 0.0;
perThreadVariable.st_Smm = 0.0;
perThreadVariable.st_Sfm = 0.0;
perThreadVariable.st_Sf = 0.0;
perThreadVariable.st_Sm = 0.0;
perThreadVariable.st_DerivativeF.SetSize(numberOfParameters);
perThreadVariable.st_DerivativeM.SetSize(numberOfParameters);
perThreadVariable.st_Differential.SetSize(this->GetNumberOfParameters());
perThreadVariable.st_DerivativeF.Fill(0.0);
perThreadVariable.st_DerivativeM.Fill(0.0);
perThreadVariable.st_Differential.Fill(0.0);
}
} // end InitializeThreadingParameters()
/**
* *************** UpdateDerivativeTerms ***************************
*/
template <class TFixedImage, class TMovingImage>
void
AdvancedNormalizedCorrelationImageToImageMetric<TFixedImage, TMovingImage>::UpdateDerivativeTerms(
const RealType fixedImageValue,
const RealType movingImageValue,
const DerivativeType & imageJacobian,
const NonZeroJacobianIndicesType & nzji,
DerivativeType & derivativeF,
DerivativeType & derivativeM,
DerivativeType & differential) const
{
const auto numberOfParameters = this->GetNumberOfParameters();
/** Calculate the contributions to the derivatives with respect to each parameter. */
if (nzji.size() == numberOfParameters)
{
/** Loop over all Jacobians. */
typename DerivativeType::const_iterator imjacit = imageJacobian.begin();
typename DerivativeType::iterator derivativeFit = derivativeF.begin();
typename DerivativeType::iterator derivativeMit = derivativeM.begin();
typename DerivativeType::iterator differentialit = differential.begin();
for (unsigned int mu = 0; mu < numberOfParameters; ++mu)
{
(*derivativeFit) += fixedImageValue * (*imjacit);
(*derivativeMit) += movingImageValue * (*imjacit);
(*differentialit) += (*imjacit);
++imjacit;
++derivativeFit;
++derivativeMit;
++differentialit;
}
}
else
{
/** Only pick the nonzero Jacobians. */
for (unsigned int i = 0; i < imageJacobian.GetSize(); ++i)
{
const unsigned int index = nzji[i];
const RealType differentialtmp = imageJacobian[i];
derivativeF[index] += fixedImageValue * differentialtmp;
derivativeM[index] += movingImageValue * differentialtmp;
differential[index] += differentialtmp;
}
}
} // end UpdateValueAndDerivativeTerms()
/**
* ******************* GetValue *******************
*/
template <class TFixedImage, class TMovingImage>
auto
AdvancedNormalizedCorrelationImageToImageMetric<TFixedImage, TMovingImage>::GetValue(
const TransformParametersType & parameters) const -> MeasureType
{
itkDebugMacro("GetValue( " << parameters << " ) ");
/** Initialize some variables */
Superclass::m_NumberOfPixelsCounted = 0;
MeasureType measure{};
/** Call non-thread-safe stuff, such as:
* this->SetTransformParameters( parameters );
* this->GetImageSampler()->Update();
* Because of these calls GetValueAndDerivative itself is not thread-safe,
* so cannot be called multiple times simultaneously.
* This is however needed in the CombinationImageToImageMetric.
* In that case, you need to:
* - switch the use of this function to on, using m_UseMetricSingleThreaded = true
* - call BeforeThreadedGetValueAndDerivative once (single-threaded) before
* calling GetValueAndDerivative
* - switch the use of this function to off, using m_UseMetricSingleThreaded = false
* - Now you can call GetValueAndDerivative multi-threaded.
*/
this->BeforeThreadedGetValueAndDerivative(parameters);
/** Get a handle to the sample container. */
ImageSampleContainerPointer sampleContainer = this->GetImageSampler()->GetOutput();
/** Create variables to store intermediate results. */
AccumulateType sff{};
AccumulateType smm{};
AccumulateType sfm{};
AccumulateType sf{};
AccumulateType sm{};
/** Loop over the fixed image samples to calculate the mean squares. */
for (const auto & fixedImageSample : *sampleContainer)
{
/** Read fixed coordinates and initialize some variables. */
const FixedImagePointType & fixedPoint = fixedImageSample.m_ImageCoordinates;
RealType movingImageValue;
/** Transform point. */
const MovingImagePointType mappedPoint = this->TransformPoint(fixedPoint);
/** Check if the point is inside the moving mask. */
bool sampleOk = this->IsInsideMovingMask(mappedPoint);
/** Compute the moving image value and check if the point is
* inside the moving image buffer. */
if (sampleOk)
{
sampleOk = this->Superclass::EvaluateMovingImageValueAndDerivative(mappedPoint, movingImageValue, nullptr);
}
if (sampleOk)
{
Superclass::m_NumberOfPixelsCounted++;
/** Get the fixed image value. */
const RealType fixedImageValue = static_cast<double>(fixedImageSample.m_ImageValue);
/** Update some sums needed to calculate NC. */
sff += fixedImageValue * fixedImageValue;
smm += movingImageValue * movingImageValue;
sfm += fixedImageValue * movingImageValue;
sf += fixedImageValue;
sm += movingImageValue;
} // end if sampleOk
} // end for loop over the image sample container
/** Check if enough samples were valid. */
this->CheckNumberOfSamples(sampleContainer->Size(), Superclass::m_NumberOfPixelsCounted);
/** If NumberOfPixelsCounted > 0, then subtract things from sff, smm and sfm. */
const RealType N = static_cast<RealType>(Superclass::m_NumberOfPixelsCounted);
if (Superclass::m_NumberOfPixelsCounted > 0)
{
sff -= (sf * sf / N);
smm -= (sm * sm / N);
sfm -= (sf * sm / N);
}
/** The denominator of the NC. */
const RealType denom = -1.0 * std::sqrt(sff * smm);
/** Calculate the measure value. */
if (Superclass::m_NumberOfPixelsCounted > 0 && denom < -1e-14)
{
measure = sfm / denom;
}
else
{
measure = MeasureType{};
}
/** Return the NC measure value. */
return measure;
} // end GetValue()
/**
* ******************* GetDerivative *******************
*/
template <class TFixedImage, class TMovingImage>
void
AdvancedNormalizedCorrelationImageToImageMetric<TFixedImage, TMovingImage>::GetDerivative(
const TransformParametersType & parameters,
DerivativeType & derivative) const
{
/** When the derivative is calculated, all information for calculating
* the metric value is available. It does not cost anything to calculate
* the metric value now. Therefore, we have chosen to only implement the
* GetValueAndDerivative(), supplying it with a dummy value variable.
*/
MeasureType dummyvalue{};
this->GetValueAndDerivative(parameters, dummyvalue, derivative);
} // end GetDerivative()
/**
* ******************* GetValueAndDerivativeSingleThreaded *******************
*/
template <class TFixedImage, class TMovingImage>
void
AdvancedNormalizedCorrelationImageToImageMetric<TFixedImage, TMovingImage>::GetValueAndDerivativeSingleThreaded(
const TransformParametersType & parameters,
MeasureType & value,
DerivativeType & derivative) const
{
itkDebugMacro("GetValueAndDerivative( " << parameters << " ) ");
/** Initialize some variables. */
Superclass::m_NumberOfPixelsCounted = 0;
derivative.set_size(this->GetNumberOfParameters());
derivative.Fill(DerivativeValueType{});
DerivativeType derivativeF(this->GetNumberOfParameters(), DerivativeValueType{});
DerivativeType derivativeM(this->GetNumberOfParameters(), DerivativeValueType{});
DerivativeType differential(this->GetNumberOfParameters(), DerivativeValueType{});
/** Array that stores dM(x)/dmu, and the sparse Jacobian + indices. */
NonZeroJacobianIndicesType nzji(Superclass::m_AdvancedTransform->GetNumberOfNonZeroJacobianIndices());
DerivativeType imageJacobian(nzji.size());
TransformJacobianType jacobian;
/** Initialize some variables for intermediate results. */
AccumulateType sff{};
AccumulateType smm{};
AccumulateType sfm{};
AccumulateType sf{};
AccumulateType sm{};
/** Call non-thread-safe stuff, such as:
* this->SetTransformParameters( parameters );
* this->GetImageSampler()->Update();
* Because of these calls GetValueAndDerivative itself is not thread-safe,
* so cannot be called multiple times simultaneously.
* This is however needed in the CombinationImageToImageMetric.
* In that case, you need to:
* - switch the use of this function to on, using m_UseMetricSingleThreaded = true
* - call BeforeThreadedGetValueAndDerivative once (single-threaded) before
* calling GetValueAndDerivative
* - switch the use of this function to off, using m_UseMetricSingleThreaded = false
* - Now you can call GetValueAndDerivative multi-threaded.
*/
this->BeforeThreadedGetValueAndDerivative(parameters);
/** Get a handle to the sample container. */
ImageSampleContainerPointer sampleContainer = this->GetImageSampler()->GetOutput();
/** Loop over the fixed image to calculate the correlation. */
for (const auto & fixedImageSample : *sampleContainer)
{
/** Read fixed coordinates and initialize some variables. */
const FixedImagePointType & fixedPoint = fixedImageSample.m_ImageCoordinates;
RealType movingImageValue;
MovingImageDerivativeType movingImageDerivative;
/** Transform point. */
const MovingImagePointType mappedPoint = this->TransformPoint(fixedPoint);
/** Check if the point is inside the moving mask. */
bool sampleOk = this->IsInsideMovingMask(mappedPoint);
/** Compute the moving image value M(T(x)) and derivative dM/dx and check if
* the point is inside the moving image buffer.
*/
if (sampleOk)
{
sampleOk =
this->Superclass::EvaluateMovingImageValueAndDerivative(mappedPoint, movingImageValue, &movingImageDerivative);
}
if (sampleOk)
{
Superclass::m_NumberOfPixelsCounted++;
/** Get the fixed image value. */
const auto fixedImageValue = static_cast<RealType>(fixedImageSample.m_ImageValue);
/** Get the TransformJacobian dT/dmu. */
this->EvaluateTransformJacobian(fixedPoint, jacobian, nzji);
/** Compute the innerproducts (dM/dx)^T (dT/dmu) and (dMask/dx)^T (dT/dmu). */
this->EvaluateTransformJacobianInnerProduct(jacobian, movingImageDerivative, imageJacobian);
/** Update some sums needed to calculate the value of NC. */
sff += fixedImageValue * fixedImageValue;
smm += movingImageValue * movingImageValue;
sfm += fixedImageValue * movingImageValue;
sf += fixedImageValue;
sm += movingImageValue;
/** Compute this pixel's contribution to the derivative terms. */
this->UpdateDerivativeTerms(
fixedImageValue, movingImageValue, imageJacobian, nzji, derivativeF, derivativeM, differential);
} // end if sampleOk
} // end for loop over the image sample container
/** Check if enough samples were valid. */
this->CheckNumberOfSamples(sampleContainer->Size(), Superclass::m_NumberOfPixelsCounted);
const auto numberOfParameters = this->GetNumberOfParameters();
/** If NumberOfPixelsCounted > 0, then subtract things from sff, smm, sfm,
* derivativeF and derivativeM.
*/
const RealType N = static_cast<RealType>(Superclass::m_NumberOfPixelsCounted);
if (Superclass::m_NumberOfPixelsCounted > 0)
{
sff -= (sf * sf / N);
smm -= (sm * sm / N);
sfm -= (sf * sm / N);
for (unsigned int i = 0; i < numberOfParameters; ++i)
{
derivativeF[i] -= sf * differential[i] / N;
derivativeM[i] -= sm * differential[i] / N;
}
}
/** The denominator of the value and the derivative. */
const RealType denom = -1.0 * std::sqrt(sff * smm);
/** Calculate the value and the derivative. */
if (Superclass::m_NumberOfPixelsCounted > 0 && denom < -1e-14)
{
value = sfm / denom;
for (unsigned int i = 0; i < numberOfParameters; ++i)
{
derivative[i] = (derivativeF[i] - (sfm / smm) * derivativeM[i]) / denom;
}
}
else
{
value = MeasureType{};
derivative.Fill(DerivativeValueType{});
}
} // end GetValueAndDerivativeSingleThreaded()
/**
* ******************* GetValueAndDerivative *******************
*/
template <class TFixedImage, class TMovingImage>
void
AdvancedNormalizedCorrelationImageToImageMetric<TFixedImage, TMovingImage>::GetValueAndDerivative(
const TransformParametersType & parameters,
MeasureType & value,
DerivativeType & derivative) const
{
/** Option for now to still use the single threaded code. */
if (!Superclass::m_UseMultiThread)
{
return this->GetValueAndDerivativeSingleThreaded(parameters, value, derivative);
}
/** Call non-thread-safe stuff, such as:
* this->SetTransformParameters( parameters );
* this->GetImageSampler()->Update();
* Because of these calls GetValueAndDerivative itself is not thread-safe,
* so cannot be called multiple times simultaneously.
* This is however needed in the CombinationImageToImageMetric.
* In that case, you need to:
* - switch the use of this function to on, using m_UseMetricSingleThreaded = true
* - call BeforeThreadedGetValueAndDerivative once (single-threaded) before
* calling GetValueAndDerivative
* - switch the use of this function to off, using m_UseMetricSingleThreaded = false
* - Now you can call GetValueAndDerivative multi-threaded.
*/
this->BeforeThreadedGetValueAndDerivative(parameters);
/** launch multithreading metric */
this->LaunchGetValueAndDerivativeThreaderCallback();
/** Gather the metric values and derivatives from all threads. */
this->AfterThreadedGetValueAndDerivative(value, derivative);
} // end GetValueAndDerivative()
/**
* ******************* ThreadedGetValueAndDerivative *******************
*/
template <class TFixedImage, class TMovingImage>
void
AdvancedNormalizedCorrelationImageToImageMetric<TFixedImage, TMovingImage>::ThreadedGetValueAndDerivative(
ThreadIdType threadId) const
{
/** Initialize array that stores dM(x)/dmu, and the sparse Jacobian + indices. */
const NumberOfParametersType nnzji = Superclass::m_AdvancedTransform->GetNumberOfNonZeroJacobianIndices();
NonZeroJacobianIndicesType nzji(nnzji);
DerivativeType imageJacobian(nzji.size());
/** Get handles to the pre-allocated derivatives for the current thread.
* The initialization is performed at the beginning of each resolution in
* InitializeThreadingParameters(), and at the end of each iteration in
* AfterThreadedGetValueAndDerivative() and the accumulate functions.
*/
DerivativeType & derivativeF = this->m_CorrelationGetValueAndDerivativePerThreadVariables[threadId].st_DerivativeF;
DerivativeType & derivativeM = this->m_CorrelationGetValueAndDerivativePerThreadVariables[threadId].st_DerivativeM;
DerivativeType & differential = this->m_CorrelationGetValueAndDerivativePerThreadVariables[threadId].st_Differential;
/** Get a handle to the sample container. */
ImageSampleContainerPointer sampleContainer = this->GetImageSampler()->GetOutput();
const unsigned long sampleContainerSize = sampleContainer->Size();
/** Get the samples for this thread. */
const unsigned long nrOfSamplesPerThreads = static_cast<unsigned long>(
std::ceil(static_cast<double>(sampleContainerSize) / static_cast<double>(Self::GetNumberOfWorkUnits())));
const auto pos_begin = std::min<size_t>(nrOfSamplesPerThreads * threadId, sampleContainerSize);
const auto pos_end = std::min<size_t>(nrOfSamplesPerThreads * (threadId + 1), sampleContainerSize);
/** Create iterator over the sample container. */
const auto beginOfSampleContainer = sampleContainer->cbegin();
const auto threader_fbegin = beginOfSampleContainer + pos_begin;
const auto threader_fend = beginOfSampleContainer + pos_end;
/** Create variables to store intermediate results. */
AccumulateType sff{};
AccumulateType smm{};
AccumulateType sfm{};
AccumulateType sf{};
AccumulateType sm{};
unsigned long numberOfPixelsCounted = 0;
/** Loop over the fixed image to calculate the mean squares. */
for (auto threader_fiter = threader_fbegin; threader_fiter != threader_fend; ++threader_fiter)
{
/** Read fixed coordinates and initialize some variables. */
const FixedImagePointType & fixedPoint = threader_fiter->m_ImageCoordinates;
RealType movingImageValue;
MovingImageDerivativeType movingImageDerivative;
/** Transform point. */
const MovingImagePointType mappedPoint = this->TransformPoint(fixedPoint);
/** Check if the point is inside the moving mask. */
bool sampleOk = this->IsInsideMovingMask(mappedPoint);
/** Compute the moving image value M(T(x)) and derivative dM/dx and check if
* the point is inside the moving image buffer.
*/
if (sampleOk)
{
sampleOk = this->FastEvaluateMovingImageValueAndDerivative(
mappedPoint, movingImageValue, &movingImageDerivative, threadId);
}
if (sampleOk)
{
++numberOfPixelsCounted;
/** Get the fixed image value. */
const RealType fixedImageValue = static_cast<RealType>(threader_fiter->m_ImageValue);
#if 0
/** Get the TransformJacobian dT/dmu. */
this->EvaluateTransformJacobian( fixedPoint, jacobian, nzji );
/** Compute the inner products (dM/dx)^T (dT/dmu). */
this->EvaluateTransformJacobianInnerProduct(
jacobian, movingImageDerivative, imageJacobian );
#else
/** Compute the inner product of the transform Jacobian dT/dmu and the moving image gradient dM/dx. */
Superclass::m_AdvancedTransform->EvaluateJacobianWithImageGradientProduct(
fixedPoint, movingImageDerivative, imageJacobian, nzji);
#endif
/** Update some sums needed to calculate the value of NC. */
sff += fixedImageValue * fixedImageValue;
smm += movingImageValue * movingImageValue;
sfm += fixedImageValue * movingImageValue;
sf += fixedImageValue;
sm += movingImageValue;
/** Compute this voxel's contribution to the derivative terms. */
this->UpdateDerivativeTerms(
fixedImageValue, movingImageValue, imageJacobian, nzji, derivativeF, derivativeM, differential);
} // end if sampleOk
} // end for loop over the image sample container
/** Only update these variables at the end to prevent unnecessary "false sharing". */
this->m_CorrelationGetValueAndDerivativePerThreadVariables[threadId].st_NumberOfPixelsCounted = numberOfPixelsCounted;
this->m_CorrelationGetValueAndDerivativePerThreadVariables[threadId].st_Sff = sff;
this->m_CorrelationGetValueAndDerivativePerThreadVariables[threadId].st_Smm = smm;
this->m_CorrelationGetValueAndDerivativePerThreadVariables[threadId].st_Sfm = sfm;
this->m_CorrelationGetValueAndDerivativePerThreadVariables[threadId].st_Sf = sf;
this->m_CorrelationGetValueAndDerivativePerThreadVariables[threadId].st_Sm = sm;
} // end ThreadedGetValueAndDerivative()
/**
* ******************* AfterThreadedGetValueAndDerivative *******************
*/
template <class TFixedImage, class TMovingImage>
void
AdvancedNormalizedCorrelationImageToImageMetric<TFixedImage, TMovingImage>::AfterThreadedGetValueAndDerivative(
MeasureType & value,
DerivativeType & derivative) const
{
const ThreadIdType numberOfThreads = Self::GetNumberOfWorkUnits();
/** Accumulate the number of pixels. */
Superclass::m_NumberOfPixelsCounted =
this->m_CorrelationGetValueAndDerivativePerThreadVariables[0].st_NumberOfPixelsCounted;
for (ThreadIdType i = 1; i < numberOfThreads; ++i)
{
Superclass::m_NumberOfPixelsCounted +=
this->m_CorrelationGetValueAndDerivativePerThreadVariables[i].st_NumberOfPixelsCounted;
}
/** Check if enough samples were valid. */
ImageSampleContainerPointer sampleContainer = this->GetImageSampler()->GetOutput();
this->CheckNumberOfSamples(sampleContainer->Size(), Superclass::m_NumberOfPixelsCounted);
/** Accumulate values. */
AccumulateType sff = this->m_CorrelationGetValueAndDerivativePerThreadVariables[0].st_Sff;
AccumulateType smm = this->m_CorrelationGetValueAndDerivativePerThreadVariables[0].st_Smm;
AccumulateType sfm = this->m_CorrelationGetValueAndDerivativePerThreadVariables[0].st_Sfm;
AccumulateType sf = this->m_CorrelationGetValueAndDerivativePerThreadVariables[0].st_Sf;
AccumulateType sm = this->m_CorrelationGetValueAndDerivativePerThreadVariables[0].st_Sm;
for (ThreadIdType i = 1; i < numberOfThreads; ++i)
{
sff += this->m_CorrelationGetValueAndDerivativePerThreadVariables[i].st_Sff;
smm += this->m_CorrelationGetValueAndDerivativePerThreadVariables[i].st_Smm;
sfm += this->m_CorrelationGetValueAndDerivativePerThreadVariables[i].st_Sfm;
sf += this->m_CorrelationGetValueAndDerivativePerThreadVariables[i].st_Sf;
sm += this->m_CorrelationGetValueAndDerivativePerThreadVariables[i].st_Sm;
/** Reset these variables for the next iteration. */
this->m_CorrelationGetValueAndDerivativePerThreadVariables[i].st_Sff = 0.0;
this->m_CorrelationGetValueAndDerivativePerThreadVariables[i].st_Smm = 0.0;
this->m_CorrelationGetValueAndDerivativePerThreadVariables[i].st_Sfm = 0.0;
this->m_CorrelationGetValueAndDerivativePerThreadVariables[i].st_Sf = 0.0;
this->m_CorrelationGetValueAndDerivativePerThreadVariables[i].st_Sm = 0.0;
}
/** Subtract things from sff, smm and sfm. */
const RealType N = static_cast<RealType>(Superclass::m_NumberOfPixelsCounted);
sff -= (sf * sf / N);
smm -= (sm * sm / N);
sfm -= (sf * sm / N);
/** The denominator of the value and the derivative. */
const RealType denom = -1.0 * std::sqrt(sff * smm);
/** Check for sufficiently large denominator. */
if (denom > -1e-14)
{
value = MeasureType{};
derivative.Fill(DerivativeValueType{});
return;
}
/** Calculate the metric value. */
value = sfm / denom;
/** Calculate the metric derivative. */
// force multi-threaded
MultiThreaderAccumulateDerivativeType userData;
userData.st_Metric = const_cast<Self *>(this);
userData.st_sf_N = sf / N;
userData.st_sm_N = sm / N;
userData.st_sfm_smm = sfm / smm;
userData.st_InvertedDenominator = 1.0 / denom;
userData.st_DerivativePointer = derivative.begin();
this->m_Threader->SetSingleMethodAndExecute(AccumulateDerivativesThreaderCallback, &userData);
} // end AfterThreadedGetValueAndDerivative()
/**
*********** AccumulateDerivativesThreaderCallback *************
*/
template <class TFixedImage, class TMovingImage>
ITK_THREAD_RETURN_FUNCTION_CALL_CONVENTION
AdvancedNormalizedCorrelationImageToImageMetric<TFixedImage, TMovingImage>::AccumulateDerivativesThreaderCallback(
void * arg)
{
assert(arg);
const auto & infoStruct = *static_cast<ThreadInfoType *>(arg);
ThreadIdType threadId = infoStruct.WorkUnitID;
ThreadIdType nrOfThreads = infoStruct.NumberOfWorkUnits;
assert(infoStruct.UserData);
const auto & userData = *static_cast<MultiThreaderAccumulateDerivativeType *>(infoStruct.UserData);
assert(userData.st_Metric);
Self & metric = *(userData.st_Metric);
const AccumulateType sf_N = userData.st_sf_N;
const AccumulateType sm_N = userData.st_sm_N;
const AccumulateType sfm_smm = userData.st_sfm_smm;
const RealType invertedDenominator = userData.st_InvertedDenominator;
const unsigned int numPar = metric.GetNumberOfParameters();
const unsigned int subSize =
static_cast<unsigned int>(std::ceil(static_cast<double>(numPar) / static_cast<double>(nrOfThreads)));
const unsigned int jmin = threadId * subSize;
const unsigned int jmax = std::min((threadId + 1) * subSize, numPar);
for (unsigned int j = jmin; j < jmax; ++j)
{
DerivativeValueType derivativeF{};
DerivativeValueType derivativeM{};
DerivativeValueType differential{};
for (ThreadIdType i = 0; i < nrOfThreads; ++i)
{
derivativeF += metric.m_CorrelationGetValueAndDerivativePerThreadVariables[i].st_DerivativeF[j];
derivativeM += metric.m_CorrelationGetValueAndDerivativePerThreadVariables[i].st_DerivativeM[j];
differential += metric.m_CorrelationGetValueAndDerivativePerThreadVariables[i].st_Differential[j];
/** Reset these variables for the next iteration. */
metric.m_CorrelationGetValueAndDerivativePerThreadVariables[i].st_DerivativeF[j] = 0.0;
metric.m_CorrelationGetValueAndDerivativePerThreadVariables[i].st_DerivativeM[j] = 0.0;
metric.m_CorrelationGetValueAndDerivativePerThreadVariables[i].st_Differential[j] = 0.0;
}
derivativeF -= sf_N * differential;
derivativeM -= sm_N * differential;
userData.st_DerivativePointer[j] = (derivativeF - sfm_smm * derivativeM) * invertedDenominator;
}
return ITK_THREAD_RETURN_DEFAULT_VALUE;
} // end AccumulateDerivativesThreaderCallback()
} // end namespace itk
#endif // end #ifndef _itkAdvancedNormalizedCorrelationImageToImageMetric_hxx
|