File: itkAdvancedNormalizedCorrelationImageToImageMetric.hxx

package info (click to toggle)
elastix 5.2.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 42,480 kB
  • sloc: cpp: 68,403; lisp: 4,118; python: 1,013; xml: 182; sh: 177; makefile: 33
file content (716 lines) | stat: -rw-r--r-- 27,746 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
/*=========================================================================
 *
 *  Copyright UMC Utrecht and contributors
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *        http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef _itkAdvancedNormalizedCorrelationImageToImageMetric_hxx
#define _itkAdvancedNormalizedCorrelationImageToImageMetric_hxx

#include "itkAdvancedNormalizedCorrelationImageToImageMetric.h"

#include <algorithm> // For min.
#include <cassert>

namespace itk
{

/**
 * ******************* Constructor *******************
 */

template <class TFixedImage, class TMovingImage>
AdvancedNormalizedCorrelationImageToImageMetric<TFixedImage,
                                                TMovingImage>::AdvancedNormalizedCorrelationImageToImageMetric()
{
  this->SetUseImageSampler(true);
  this->SetUseFixedImageLimiter(false);
  this->SetUseMovingImageLimiter(false);

} // end Constructor


/**
 * ******************* InitializeThreadingParameters *******************
 */

template <class TFixedImage, class TMovingImage>
void
AdvancedNormalizedCorrelationImageToImageMetric<TFixedImage, TMovingImage>::InitializeThreadingParameters() const
{
  const ThreadIdType numberOfThreads = Self::GetNumberOfWorkUnits();

  /** Resize and initialize the threading related parameters.
   * The SetSize() functions do not resize the data when this is not
   * needed, which saves valuable re-allocation time.
   * Filling the potentially large vectors is performed later, in each thread,
   * which has performance benefits for larger vector sizes.
   */

  /** Only resize the array of structs when needed. */
  m_CorrelationGetValueAndDerivativePerThreadVariables.resize(numberOfThreads);

  /** Some initialization. */
  const auto numberOfParameters = this->GetNumberOfParameters();
  for (auto & perThreadVariable : m_CorrelationGetValueAndDerivativePerThreadVariables)
  {
    perThreadVariable.st_NumberOfPixelsCounted = SizeValueType{};
    perThreadVariable.st_Sff = 0.0;
    perThreadVariable.st_Smm = 0.0;
    perThreadVariable.st_Sfm = 0.0;
    perThreadVariable.st_Sf = 0.0;
    perThreadVariable.st_Sm = 0.0;
    perThreadVariable.st_DerivativeF.SetSize(numberOfParameters);
    perThreadVariable.st_DerivativeM.SetSize(numberOfParameters);
    perThreadVariable.st_Differential.SetSize(this->GetNumberOfParameters());
    perThreadVariable.st_DerivativeF.Fill(0.0);
    perThreadVariable.st_DerivativeM.Fill(0.0);
    perThreadVariable.st_Differential.Fill(0.0);
  }

} // end InitializeThreadingParameters()


/**
 * *************** UpdateDerivativeTerms ***************************
 */

template <class TFixedImage, class TMovingImage>
void
AdvancedNormalizedCorrelationImageToImageMetric<TFixedImage, TMovingImage>::UpdateDerivativeTerms(
  const RealType                     fixedImageValue,
  const RealType                     movingImageValue,
  const DerivativeType &             imageJacobian,
  const NonZeroJacobianIndicesType & nzji,
  DerivativeType &                   derivativeF,
  DerivativeType &                   derivativeM,
  DerivativeType &                   differential) const
{
  const auto numberOfParameters = this->GetNumberOfParameters();

  /** Calculate the contributions to the derivatives with respect to each parameter. */
  if (nzji.size() == numberOfParameters)
  {
    /** Loop over all Jacobians. */
    typename DerivativeType::const_iterator imjacit = imageJacobian.begin();
    typename DerivativeType::iterator       derivativeFit = derivativeF.begin();
    typename DerivativeType::iterator       derivativeMit = derivativeM.begin();
    typename DerivativeType::iterator       differentialit = differential.begin();

    for (unsigned int mu = 0; mu < numberOfParameters; ++mu)
    {
      (*derivativeFit) += fixedImageValue * (*imjacit);
      (*derivativeMit) += movingImageValue * (*imjacit);
      (*differentialit) += (*imjacit);
      ++imjacit;
      ++derivativeFit;
      ++derivativeMit;
      ++differentialit;
    }
  }
  else
  {
    /** Only pick the nonzero Jacobians. */
    for (unsigned int i = 0; i < imageJacobian.GetSize(); ++i)
    {
      const unsigned int index = nzji[i];
      const RealType     differentialtmp = imageJacobian[i];
      derivativeF[index] += fixedImageValue * differentialtmp;
      derivativeM[index] += movingImageValue * differentialtmp;
      differential[index] += differentialtmp;
    }
  }

} // end UpdateValueAndDerivativeTerms()


/**
 * ******************* GetValue *******************
 */

template <class TFixedImage, class TMovingImage>
auto
AdvancedNormalizedCorrelationImageToImageMetric<TFixedImage, TMovingImage>::GetValue(
  const TransformParametersType & parameters) const -> MeasureType
{
  itkDebugMacro("GetValue( " << parameters << " ) ");

  /** Initialize some variables */
  Superclass::m_NumberOfPixelsCounted = 0;
  MeasureType measure{};

  /** Call non-thread-safe stuff, such as:
   *   this->SetTransformParameters( parameters );
   *   this->GetImageSampler()->Update();
   * Because of these calls GetValueAndDerivative itself is not thread-safe,
   * so cannot be called multiple times simultaneously.
   * This is however needed in the CombinationImageToImageMetric.
   * In that case, you need to:
   * - switch the use of this function to on, using m_UseMetricSingleThreaded = true
   * - call BeforeThreadedGetValueAndDerivative once (single-threaded) before
   *   calling GetValueAndDerivative
   * - switch the use of this function to off, using m_UseMetricSingleThreaded = false
   * - Now you can call GetValueAndDerivative multi-threaded.
   */
  this->BeforeThreadedGetValueAndDerivative(parameters);

  /** Get a handle to the sample container. */
  ImageSampleContainerPointer sampleContainer = this->GetImageSampler()->GetOutput();

  /** Create variables to store intermediate results. */
  AccumulateType sff{};
  AccumulateType smm{};
  AccumulateType sfm{};
  AccumulateType sf{};
  AccumulateType sm{};

  /** Loop over the fixed image samples to calculate the mean squares. */
  for (const auto & fixedImageSample : *sampleContainer)
  {
    /** Read fixed coordinates and initialize some variables. */
    const FixedImagePointType & fixedPoint = fixedImageSample.m_ImageCoordinates;
    RealType                    movingImageValue;

    /** Transform point. */
    const MovingImagePointType mappedPoint = this->TransformPoint(fixedPoint);

    /** Check if the point is inside the moving mask. */
    bool sampleOk = this->IsInsideMovingMask(mappedPoint);

    /** Compute the moving image value and check if the point is
     * inside the moving image buffer. */
    if (sampleOk)
    {
      sampleOk = this->Superclass::EvaluateMovingImageValueAndDerivative(mappedPoint, movingImageValue, nullptr);
    }

    if (sampleOk)
    {
      Superclass::m_NumberOfPixelsCounted++;

      /** Get the fixed image value. */
      const RealType fixedImageValue = static_cast<double>(fixedImageSample.m_ImageValue);

      /** Update some sums needed to calculate NC. */
      sff += fixedImageValue * fixedImageValue;
      smm += movingImageValue * movingImageValue;
      sfm += fixedImageValue * movingImageValue;
      sf += fixedImageValue;
      sm += movingImageValue;

    } // end if sampleOk

  } // end for loop over the image sample container

  /** Check if enough samples were valid. */
  this->CheckNumberOfSamples(sampleContainer->Size(), Superclass::m_NumberOfPixelsCounted);

  /** If NumberOfPixelsCounted > 0, then subtract things from sff, smm and sfm. */
  const RealType N = static_cast<RealType>(Superclass::m_NumberOfPixelsCounted);
  if (Superclass::m_NumberOfPixelsCounted > 0)
  {
    sff -= (sf * sf / N);
    smm -= (sm * sm / N);
    sfm -= (sf * sm / N);
  }

  /** The denominator of the NC. */
  const RealType denom = -1.0 * std::sqrt(sff * smm);

  /** Calculate the measure value. */
  if (Superclass::m_NumberOfPixelsCounted > 0 && denom < -1e-14)
  {
    measure = sfm / denom;
  }
  else
  {
    measure = MeasureType{};
  }

  /** Return the NC measure value. */
  return measure;

} // end GetValue()


/**
 * ******************* GetDerivative *******************
 */

template <class TFixedImage, class TMovingImage>
void
AdvancedNormalizedCorrelationImageToImageMetric<TFixedImage, TMovingImage>::GetDerivative(
  const TransformParametersType & parameters,
  DerivativeType &                derivative) const
{
  /** When the derivative is calculated, all information for calculating
   * the metric value is available. It does not cost anything to calculate
   * the metric value now. Therefore, we have chosen to only implement the
   * GetValueAndDerivative(), supplying it with a dummy value variable.
   */
  MeasureType dummyvalue{};
  this->GetValueAndDerivative(parameters, dummyvalue, derivative);

} // end GetDerivative()


/**
 * ******************* GetValueAndDerivativeSingleThreaded *******************
 */

template <class TFixedImage, class TMovingImage>
void
AdvancedNormalizedCorrelationImageToImageMetric<TFixedImage, TMovingImage>::GetValueAndDerivativeSingleThreaded(
  const TransformParametersType & parameters,
  MeasureType &                   value,
  DerivativeType &                derivative) const
{
  itkDebugMacro("GetValueAndDerivative( " << parameters << " ) ");

  /** Initialize some variables. */
  Superclass::m_NumberOfPixelsCounted = 0;
  derivative.set_size(this->GetNumberOfParameters());
  derivative.Fill(DerivativeValueType{});
  DerivativeType derivativeF(this->GetNumberOfParameters(), DerivativeValueType{});
  DerivativeType derivativeM(this->GetNumberOfParameters(), DerivativeValueType{});
  DerivativeType differential(this->GetNumberOfParameters(), DerivativeValueType{});

  /** Array that stores dM(x)/dmu, and the sparse Jacobian + indices. */
  NonZeroJacobianIndicesType nzji(Superclass::m_AdvancedTransform->GetNumberOfNonZeroJacobianIndices());
  DerivativeType             imageJacobian(nzji.size());
  TransformJacobianType      jacobian;

  /** Initialize some variables for intermediate results. */
  AccumulateType sff{};
  AccumulateType smm{};
  AccumulateType sfm{};
  AccumulateType sf{};
  AccumulateType sm{};

  /** Call non-thread-safe stuff, such as:
   *   this->SetTransformParameters( parameters );
   *   this->GetImageSampler()->Update();
   * Because of these calls GetValueAndDerivative itself is not thread-safe,
   * so cannot be called multiple times simultaneously.
   * This is however needed in the CombinationImageToImageMetric.
   * In that case, you need to:
   * - switch the use of this function to on, using m_UseMetricSingleThreaded = true
   * - call BeforeThreadedGetValueAndDerivative once (single-threaded) before
   *   calling GetValueAndDerivative
   * - switch the use of this function to off, using m_UseMetricSingleThreaded = false
   * - Now you can call GetValueAndDerivative multi-threaded.
   */
  this->BeforeThreadedGetValueAndDerivative(parameters);

  /** Get a handle to the sample container. */
  ImageSampleContainerPointer sampleContainer = this->GetImageSampler()->GetOutput();

  /** Loop over the fixed image to calculate the correlation. */
  for (const auto & fixedImageSample : *sampleContainer)
  {
    /** Read fixed coordinates and initialize some variables. */
    const FixedImagePointType & fixedPoint = fixedImageSample.m_ImageCoordinates;
    RealType                    movingImageValue;
    MovingImageDerivativeType   movingImageDerivative;

    /** Transform point. */
    const MovingImagePointType mappedPoint = this->TransformPoint(fixedPoint);

    /** Check if the point is inside the moving mask. */
    bool sampleOk = this->IsInsideMovingMask(mappedPoint);

    /** Compute the moving image value M(T(x)) and derivative dM/dx and check if
     * the point is inside the moving image buffer.
     */
    if (sampleOk)
    {
      sampleOk =
        this->Superclass::EvaluateMovingImageValueAndDerivative(mappedPoint, movingImageValue, &movingImageDerivative);
    }

    if (sampleOk)
    {
      Superclass::m_NumberOfPixelsCounted++;

      /** Get the fixed image value. */
      const auto fixedImageValue = static_cast<RealType>(fixedImageSample.m_ImageValue);

      /** Get the TransformJacobian dT/dmu. */
      this->EvaluateTransformJacobian(fixedPoint, jacobian, nzji);

      /** Compute the innerproducts (dM/dx)^T (dT/dmu) and (dMask/dx)^T (dT/dmu). */
      this->EvaluateTransformJacobianInnerProduct(jacobian, movingImageDerivative, imageJacobian);

      /** Update some sums needed to calculate the value of NC. */
      sff += fixedImageValue * fixedImageValue;
      smm += movingImageValue * movingImageValue;
      sfm += fixedImageValue * movingImageValue;
      sf += fixedImageValue;
      sm += movingImageValue;

      /** Compute this pixel's contribution to the derivative terms. */
      this->UpdateDerivativeTerms(
        fixedImageValue, movingImageValue, imageJacobian, nzji, derivativeF, derivativeM, differential);

    } // end if sampleOk

  } // end for loop over the image sample container

  /** Check if enough samples were valid. */
  this->CheckNumberOfSamples(sampleContainer->Size(), Superclass::m_NumberOfPixelsCounted);

  const auto numberOfParameters = this->GetNumberOfParameters();

  /** If NumberOfPixelsCounted > 0, then subtract things from sff, smm, sfm,
   * derivativeF and derivativeM.
   */
  const RealType N = static_cast<RealType>(Superclass::m_NumberOfPixelsCounted);
  if (Superclass::m_NumberOfPixelsCounted > 0)
  {
    sff -= (sf * sf / N);
    smm -= (sm * sm / N);
    sfm -= (sf * sm / N);

    for (unsigned int i = 0; i < numberOfParameters; ++i)
    {
      derivativeF[i] -= sf * differential[i] / N;
      derivativeM[i] -= sm * differential[i] / N;
    }
  }

  /** The denominator of the value and the derivative. */
  const RealType denom = -1.0 * std::sqrt(sff * smm);

  /** Calculate the value and the derivative. */
  if (Superclass::m_NumberOfPixelsCounted > 0 && denom < -1e-14)
  {
    value = sfm / denom;
    for (unsigned int i = 0; i < numberOfParameters; ++i)
    {
      derivative[i] = (derivativeF[i] - (sfm / smm) * derivativeM[i]) / denom;
    }
  }
  else
  {
    value = MeasureType{};
    derivative.Fill(DerivativeValueType{});
  }

} // end GetValueAndDerivativeSingleThreaded()


/**
 * ******************* GetValueAndDerivative *******************
 */

template <class TFixedImage, class TMovingImage>
void
AdvancedNormalizedCorrelationImageToImageMetric<TFixedImage, TMovingImage>::GetValueAndDerivative(
  const TransformParametersType & parameters,
  MeasureType &                   value,
  DerivativeType &                derivative) const
{
  /** Option for now to still use the single threaded code. */
  if (!Superclass::m_UseMultiThread)
  {
    return this->GetValueAndDerivativeSingleThreaded(parameters, value, derivative);
  }

  /** Call non-thread-safe stuff, such as:
   *   this->SetTransformParameters( parameters );
   *   this->GetImageSampler()->Update();
   * Because of these calls GetValueAndDerivative itself is not thread-safe,
   * so cannot be called multiple times simultaneously.
   * This is however needed in the CombinationImageToImageMetric.
   * In that case, you need to:
   * - switch the use of this function to on, using m_UseMetricSingleThreaded = true
   * - call BeforeThreadedGetValueAndDerivative once (single-threaded) before
   *   calling GetValueAndDerivative
   * - switch the use of this function to off, using m_UseMetricSingleThreaded = false
   * - Now you can call GetValueAndDerivative multi-threaded.
   */
  this->BeforeThreadedGetValueAndDerivative(parameters);

  /** launch multithreading metric */
  this->LaunchGetValueAndDerivativeThreaderCallback();

  /** Gather the metric values and derivatives from all threads. */
  this->AfterThreadedGetValueAndDerivative(value, derivative);

} // end GetValueAndDerivative()


/**
 * ******************* ThreadedGetValueAndDerivative *******************
 */

template <class TFixedImage, class TMovingImage>
void
AdvancedNormalizedCorrelationImageToImageMetric<TFixedImage, TMovingImage>::ThreadedGetValueAndDerivative(
  ThreadIdType threadId) const
{
  /** Initialize array that stores dM(x)/dmu, and the sparse Jacobian + indices. */
  const NumberOfParametersType nnzji = Superclass::m_AdvancedTransform->GetNumberOfNonZeroJacobianIndices();
  NonZeroJacobianIndicesType   nzji(nnzji);
  DerivativeType               imageJacobian(nzji.size());

  /** Get handles to the pre-allocated derivatives for the current thread.
   * The initialization is performed at the beginning of each resolution in
   * InitializeThreadingParameters(), and at the end of each iteration in
   * AfterThreadedGetValueAndDerivative() and the accumulate functions.
   */
  DerivativeType & derivativeF = this->m_CorrelationGetValueAndDerivativePerThreadVariables[threadId].st_DerivativeF;
  DerivativeType & derivativeM = this->m_CorrelationGetValueAndDerivativePerThreadVariables[threadId].st_DerivativeM;
  DerivativeType & differential = this->m_CorrelationGetValueAndDerivativePerThreadVariables[threadId].st_Differential;

  /** Get a handle to the sample container. */
  ImageSampleContainerPointer sampleContainer = this->GetImageSampler()->GetOutput();
  const unsigned long         sampleContainerSize = sampleContainer->Size();

  /** Get the samples for this thread. */
  const unsigned long nrOfSamplesPerThreads = static_cast<unsigned long>(
    std::ceil(static_cast<double>(sampleContainerSize) / static_cast<double>(Self::GetNumberOfWorkUnits())));

  const auto pos_begin = std::min<size_t>(nrOfSamplesPerThreads * threadId, sampleContainerSize);
  const auto pos_end = std::min<size_t>(nrOfSamplesPerThreads * (threadId + 1), sampleContainerSize);

  /** Create iterator over the sample container. */
  const auto beginOfSampleContainer = sampleContainer->cbegin();
  const auto threader_fbegin = beginOfSampleContainer + pos_begin;
  const auto threader_fend = beginOfSampleContainer + pos_end;

  /** Create variables to store intermediate results. */
  AccumulateType sff{};
  AccumulateType smm{};
  AccumulateType sfm{};
  AccumulateType sf{};
  AccumulateType sm{};
  unsigned long  numberOfPixelsCounted = 0;

  /** Loop over the fixed image to calculate the mean squares. */
  for (auto threader_fiter = threader_fbegin; threader_fiter != threader_fend; ++threader_fiter)
  {
    /** Read fixed coordinates and initialize some variables. */
    const FixedImagePointType & fixedPoint = threader_fiter->m_ImageCoordinates;
    RealType                    movingImageValue;
    MovingImageDerivativeType   movingImageDerivative;

    /** Transform point. */
    const MovingImagePointType mappedPoint = this->TransformPoint(fixedPoint);

    /** Check if the point is inside the moving mask. */
    bool sampleOk = this->IsInsideMovingMask(mappedPoint);

    /** Compute the moving image value M(T(x)) and derivative dM/dx and check if
     * the point is inside the moving image buffer.
     */
    if (sampleOk)
    {
      sampleOk = this->FastEvaluateMovingImageValueAndDerivative(
        mappedPoint, movingImageValue, &movingImageDerivative, threadId);
    }

    if (sampleOk)
    {
      ++numberOfPixelsCounted;

      /** Get the fixed image value. */
      const RealType fixedImageValue = static_cast<RealType>(threader_fiter->m_ImageValue);

#if 0
      /** Get the TransformJacobian dT/dmu. */
      this->EvaluateTransformJacobian( fixedPoint, jacobian, nzji );

      /** Compute the inner products (dM/dx)^T (dT/dmu). */
      this->EvaluateTransformJacobianInnerProduct(
        jacobian, movingImageDerivative, imageJacobian );
#else
      /** Compute the inner product of the transform Jacobian dT/dmu and the moving image gradient dM/dx. */
      Superclass::m_AdvancedTransform->EvaluateJacobianWithImageGradientProduct(
        fixedPoint, movingImageDerivative, imageJacobian, nzji);
#endif

      /** Update some sums needed to calculate the value of NC. */
      sff += fixedImageValue * fixedImageValue;
      smm += movingImageValue * movingImageValue;
      sfm += fixedImageValue * movingImageValue;
      sf += fixedImageValue;
      sm += movingImageValue;

      /** Compute this voxel's contribution to the derivative terms. */
      this->UpdateDerivativeTerms(
        fixedImageValue, movingImageValue, imageJacobian, nzji, derivativeF, derivativeM, differential);

    } // end if sampleOk

  } // end for loop over the image sample container

  /** Only update these variables at the end to prevent unnecessary "false sharing". */
  this->m_CorrelationGetValueAndDerivativePerThreadVariables[threadId].st_NumberOfPixelsCounted = numberOfPixelsCounted;
  this->m_CorrelationGetValueAndDerivativePerThreadVariables[threadId].st_Sff = sff;
  this->m_CorrelationGetValueAndDerivativePerThreadVariables[threadId].st_Smm = smm;
  this->m_CorrelationGetValueAndDerivativePerThreadVariables[threadId].st_Sfm = sfm;
  this->m_CorrelationGetValueAndDerivativePerThreadVariables[threadId].st_Sf = sf;
  this->m_CorrelationGetValueAndDerivativePerThreadVariables[threadId].st_Sm = sm;

} // end ThreadedGetValueAndDerivative()


/**
 * ******************* AfterThreadedGetValueAndDerivative *******************
 */

template <class TFixedImage, class TMovingImage>
void
AdvancedNormalizedCorrelationImageToImageMetric<TFixedImage, TMovingImage>::AfterThreadedGetValueAndDerivative(
  MeasureType &    value,
  DerivativeType & derivative) const
{
  const ThreadIdType numberOfThreads = Self::GetNumberOfWorkUnits();

  /** Accumulate the number of pixels. */
  Superclass::m_NumberOfPixelsCounted =
    this->m_CorrelationGetValueAndDerivativePerThreadVariables[0].st_NumberOfPixelsCounted;
  for (ThreadIdType i = 1; i < numberOfThreads; ++i)
  {
    Superclass::m_NumberOfPixelsCounted +=
      this->m_CorrelationGetValueAndDerivativePerThreadVariables[i].st_NumberOfPixelsCounted;
  }

  /** Check if enough samples were valid. */
  ImageSampleContainerPointer sampleContainer = this->GetImageSampler()->GetOutput();
  this->CheckNumberOfSamples(sampleContainer->Size(), Superclass::m_NumberOfPixelsCounted);

  /** Accumulate values. */
  AccumulateType sff = this->m_CorrelationGetValueAndDerivativePerThreadVariables[0].st_Sff;
  AccumulateType smm = this->m_CorrelationGetValueAndDerivativePerThreadVariables[0].st_Smm;
  AccumulateType sfm = this->m_CorrelationGetValueAndDerivativePerThreadVariables[0].st_Sfm;
  AccumulateType sf = this->m_CorrelationGetValueAndDerivativePerThreadVariables[0].st_Sf;
  AccumulateType sm = this->m_CorrelationGetValueAndDerivativePerThreadVariables[0].st_Sm;
  for (ThreadIdType i = 1; i < numberOfThreads; ++i)
  {
    sff += this->m_CorrelationGetValueAndDerivativePerThreadVariables[i].st_Sff;
    smm += this->m_CorrelationGetValueAndDerivativePerThreadVariables[i].st_Smm;
    sfm += this->m_CorrelationGetValueAndDerivativePerThreadVariables[i].st_Sfm;
    sf += this->m_CorrelationGetValueAndDerivativePerThreadVariables[i].st_Sf;
    sm += this->m_CorrelationGetValueAndDerivativePerThreadVariables[i].st_Sm;

    /** Reset these variables for the next iteration. */
    this->m_CorrelationGetValueAndDerivativePerThreadVariables[i].st_Sff = 0.0;
    this->m_CorrelationGetValueAndDerivativePerThreadVariables[i].st_Smm = 0.0;
    this->m_CorrelationGetValueAndDerivativePerThreadVariables[i].st_Sfm = 0.0;
    this->m_CorrelationGetValueAndDerivativePerThreadVariables[i].st_Sf = 0.0;
    this->m_CorrelationGetValueAndDerivativePerThreadVariables[i].st_Sm = 0.0;
  }

  /** Subtract things from sff, smm and sfm. */
  const RealType N = static_cast<RealType>(Superclass::m_NumberOfPixelsCounted);
  sff -= (sf * sf / N);
  smm -= (sm * sm / N);
  sfm -= (sf * sm / N);

  /** The denominator of the value and the derivative. */
  const RealType denom = -1.0 * std::sqrt(sff * smm);

  /** Check for sufficiently large denominator. */
  if (denom > -1e-14)
  {
    value = MeasureType{};
    derivative.Fill(DerivativeValueType{});
    return;
  }

  /** Calculate the metric value. */
  value = sfm / denom;

  /** Calculate the metric derivative. */
  // force multi-threaded

  MultiThreaderAccumulateDerivativeType userData;

  userData.st_Metric = const_cast<Self *>(this);
  userData.st_sf_N = sf / N;
  userData.st_sm_N = sm / N;
  userData.st_sfm_smm = sfm / smm;
  userData.st_InvertedDenominator = 1.0 / denom;
  userData.st_DerivativePointer = derivative.begin();

  this->m_Threader->SetSingleMethodAndExecute(AccumulateDerivativesThreaderCallback, &userData);

} // end AfterThreadedGetValueAndDerivative()


/**
 *********** AccumulateDerivativesThreaderCallback *************
 */

template <class TFixedImage, class TMovingImage>
ITK_THREAD_RETURN_FUNCTION_CALL_CONVENTION
AdvancedNormalizedCorrelationImageToImageMetric<TFixedImage, TMovingImage>::AccumulateDerivativesThreaderCallback(
  void * arg)
{
  assert(arg);
  const auto & infoStruct = *static_cast<ThreadInfoType *>(arg);
  ThreadIdType threadId = infoStruct.WorkUnitID;
  ThreadIdType nrOfThreads = infoStruct.NumberOfWorkUnits;

  assert(infoStruct.UserData);
  const auto & userData = *static_cast<MultiThreaderAccumulateDerivativeType *>(infoStruct.UserData);

  assert(userData.st_Metric);
  Self & metric = *(userData.st_Metric);

  const AccumulateType sf_N = userData.st_sf_N;
  const AccumulateType sm_N = userData.st_sm_N;
  const AccumulateType sfm_smm = userData.st_sfm_smm;
  const RealType       invertedDenominator = userData.st_InvertedDenominator;

  const unsigned int numPar = metric.GetNumberOfParameters();
  const unsigned int subSize =
    static_cast<unsigned int>(std::ceil(static_cast<double>(numPar) / static_cast<double>(nrOfThreads)));
  const unsigned int jmin = threadId * subSize;
  const unsigned int jmax = std::min((threadId + 1) * subSize, numPar);

  for (unsigned int j = jmin; j < jmax; ++j)
  {
    DerivativeValueType derivativeF{};
    DerivativeValueType derivativeM{};
    DerivativeValueType differential{};

    for (ThreadIdType i = 0; i < nrOfThreads; ++i)
    {
      derivativeF += metric.m_CorrelationGetValueAndDerivativePerThreadVariables[i].st_DerivativeF[j];
      derivativeM += metric.m_CorrelationGetValueAndDerivativePerThreadVariables[i].st_DerivativeM[j];
      differential += metric.m_CorrelationGetValueAndDerivativePerThreadVariables[i].st_Differential[j];

      /** Reset these variables for the next iteration. */
      metric.m_CorrelationGetValueAndDerivativePerThreadVariables[i].st_DerivativeF[j] = 0.0;
      metric.m_CorrelationGetValueAndDerivativePerThreadVariables[i].st_DerivativeM[j] = 0.0;
      metric.m_CorrelationGetValueAndDerivativePerThreadVariables[i].st_Differential[j] = 0.0;
    }

    derivativeF -= sf_N * differential;
    derivativeM -= sm_N * differential;

    userData.st_DerivativePointer[j] = (derivativeF - sfm_smm * derivativeM) * invertedDenominator;
  }

  return ITK_THREAD_RETURN_DEFAULT_VALUE;

} // end AccumulateDerivativesThreaderCallback()


} // end namespace itk

#endif // end #ifndef _itkAdvancedNormalizedCorrelationImageToImageMetric_hxx