File: itkKNNGraphAlphaMutualInformationImageToImageMetric.h

package info (click to toggle)
elastix 5.2.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 42,480 kB
  • sloc: cpp: 68,403; lisp: 4,118; python: 1,013; xml: 182; sh: 177; makefile: 33
file content (346 lines) | stat: -rw-r--r-- 14,711 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
/*=========================================================================
 *
 *  Copyright UMC Utrecht and contributors
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *        http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkKNNGraphAlphaMutualInformationImageToImageMetric_h
#define itkKNNGraphAlphaMutualInformationImageToImageMetric_h

/** Includes for the Superclass. */
#include "itkMultiInputImageToImageMetricBase.h"

/** Includes for the kNN trees. */
#include "itkArray.h"
#include "itkListSampleCArray.h"
#include "itkBinaryTreeBase.h"
#include "itkBinaryTreeSearchBase.h"

/** Supported trees. */
#include "itkANNkDTree.h"
#include "itkANNbdTree.h"
#include "itkANNBruteForceTree.h"

/** Supported tree searchers. */
#include "itkANNStandardTreeSearch.h"
#include "itkANNFixedRadiusTreeSearch.h"
#include "itkANNPriorityTreeSearch.h"

/** Include for the spatial derivatives. */
#include "itkArray2D.h"

namespace itk
{
/**
 * \class KNNGraphAlphaMutualInformationImageToImageMetric
 *
 * \brief Computes similarity between two images to be registered.
 *
 * This metric computes the alpha-Mutual Information (aMI) between
 * two multi-channeled data sets. Said otherwise, given two sets of
 * features, the aMI between them is calculated.
 * Since for higher dimensional aMI it is infeasible to compute high
 * dimensional joint histograms, here we adopt a framework based on
 * the length of certain graphs, see Neemuchwala. Specifically, we use
 * the k-Nearest Neighbour (kNN) graph, using an implementation provided
 * by the Approximate Nearest Neighbour (ANN) software package.
 *
 * Note that the feature image are given beforehand, and that values
 * are calculated by interpolation on the transformed point. For some
 * features, it would be better (but slower) to first apply the transform
 * on the image and then recalculate the feature.
 *
 * All the technical details can be found in:\n
 * M. Staring, U.A. van der Heide, S. Klein, M.A. Viergever and J.P.W. Pluim,
 * "Registration of Cervical MRI Using Multifeature Mutual Information,"
 * IEEE Transactions on Medical Imaging, vol. 28, no. 9, pp. 1412 - 1421,
 * September 2009.
 *
 * \ingroup RegistrationMetrics
 */

template <class TFixedImage, class TMovingImage>
class ITK_TEMPLATE_EXPORT KNNGraphAlphaMutualInformationImageToImageMetric
  : public MultiInputImageToImageMetricBase<TFixedImage, TMovingImage>
{
public:
  ITK_DISALLOW_COPY_AND_MOVE(KNNGraphAlphaMutualInformationImageToImageMetric);

  /** Standard itk. */
  using Self = KNNGraphAlphaMutualInformationImageToImageMetric;
  using Superclass = MultiInputImageToImageMetricBase<TFixedImage, TMovingImage>;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** Run-time type information (and related methods). */
  itkTypeMacro(KNNGraphAlphaMutualInformationImageToImageMetric, MultiInputImageToImageMetricBase);

  /** Typedefs from the superclass. */
  using typename Superclass::CoordinateRepresentationType;
  using typename Superclass::MovingImageType;
  using typename Superclass::MovingImagePixelType;
  using typename Superclass::MovingImageConstPointer;
  using typename Superclass::FixedImageType;
  using typename Superclass::FixedImageConstPointer;
  using typename Superclass::FixedImageRegionType;
  using typename Superclass::TransformType;
  using typename Superclass::TransformPointer;
  using typename Superclass::InputPointType;
  using typename Superclass::OutputPointType;
  using typename Superclass::TransformParametersType;
  using typename Superclass::TransformJacobianType;
  using typename Superclass::InterpolatorType;
  using typename Superclass::InterpolatorPointer;
  using typename Superclass::RealType;
  using typename Superclass::GradientPixelType;
  using typename Superclass::GradientImageType;
  using typename Superclass::GradientImagePointer;
  using typename Superclass::FixedImageMaskType;
  using typename Superclass::FixedImageMaskPointer;
  using typename Superclass::MovingImageMaskType;
  using typename Superclass::MovingImageMaskPointer;
  using typename Superclass::MeasureType;
  using typename Superclass::DerivativeType;
  using typename Superclass::ParametersType;
  using typename Superclass::FixedImagePixelType;
  using typename Superclass::MovingImageRegionType;
  using typename Superclass::ImageSamplerType;
  using typename Superclass::ImageSamplerPointer;
  using typename Superclass::ImageSampleContainerType;
  using typename Superclass::ImageSampleContainerPointer;
  using typename Superclass::FixedImageLimiterType;
  using typename Superclass::MovingImageLimiterType;
  using typename Superclass::FixedImageLimiterOutputType;
  using typename Superclass::MovingImageLimiterOutputType;
  using typename Superclass::NonZeroJacobianIndicesType;

  /** Typedef's for storing multiple inputs. */
  using typename Superclass::FixedImageVectorType;
  using typename Superclass::FixedImageMaskVectorType;
  using typename Superclass::FixedImageRegionVectorType;
  using typename Superclass::MovingImageVectorType;
  using typename Superclass::MovingImageMaskVectorType;
  using typename Superclass::InterpolatorVectorType;
  using typename Superclass::FixedImageInterpolatorVectorType;

  /** The fixed image dimension. */
  itkStaticConstMacro(FixedImageDimension, unsigned int, FixedImageType::ImageDimension);
  itkStaticConstMacro(MovingImageDimension, unsigned int, MovingImageType::ImageDimension);

  /** Typedefs for the samples. */
  using MeasurementVectorType = Array<double>;
  using MeasurementVectorValueType = typename MeasurementVectorType::ValueType;
  using ListSampleType = typename Statistics::ListSampleCArray<MeasurementVectorType, double>;
  using ListSamplePointer = typename ListSampleType::Pointer;

  /** Typedefs for trees. */
  using BinaryKNNTreeType = BinaryTreeBase<ListSampleType>;
  using BinaryKNNTreePointer = typename BinaryKNNTreeType::Pointer;
  using ANNkDTreeType = ANNkDTree<ListSampleType>;
  using ANNbdTreeType = ANNbdTree<ListSampleType>;
  using ANNBruteForceTreeType = ANNBruteForceTree<ListSampleType>;

  /** Typedefs for tree searchers. */
  using BinaryKNNTreeSearchType = BinaryTreeSearchBase<ListSampleType>;
  using BinaryKNNTreeSearchPointer = typename BinaryKNNTreeSearchType::Pointer;
  using ANNStandardTreeSearchType = ANNStandardTreeSearch<ListSampleType>;
  using ANNFixedRadiusTreeSearchType = ANNFixedRadiusTreeSearch<ListSampleType>;
  using ANNPriorityTreeSearchType = ANNPriorityTreeSearch<ListSampleType>;

  using IndexArrayType = typename BinaryKNNTreeSearchType::IndexArrayType;
  using DistanceArrayType = typename BinaryKNNTreeSearchType::DistanceArrayType;

  using typename Superclass::DerivativeValueType;
  using TransformJacobianValueType = typename TransformJacobianType::ValueType;

  /**
   * *** Set trees: ***
   * Currently kd, bd, and brute force trees are supported.
   */

  /** Set ANNkDTree. */
  void
  SetANNkDTree(unsigned int bucketSize, std::string splittingRule);

  /** Set ANNkDTree. */
  void
  SetANNkDTree(unsigned int bucketSize,
               std::string  splittingRuleFixed,
               std::string  splittingRuleMoving,
               std::string  splittingRuleJoint);

  /** Set ANNbdTree. */
  void
  SetANNbdTree(unsigned int bucketSize, std::string splittingRule, std::string shrinkingRule);

  /** Set ANNbdTree. */
  void
  SetANNbdTree(unsigned int bucketSize,
               std::string  splittingRuleFixed,
               std::string  splittingRuleMoving,
               std::string  splittingRuleJoint,
               std::string  shrinkingRuleFixed,
               std::string  shrinkingRuleMoving,
               std::string  shrinkingRuleJoint);

  /** Set ANNBruteForceTree. */
  void
  SetANNBruteForceTree();

  /**
   * *** Set tree searchers: ***
   * Currently standard, fixed radius, and priority tree searchers are supported.
   */

  /** Set ANNStandardTreeSearch. */
  void
  SetANNStandardTreeSearch(unsigned int kNearestNeighbors, double errorBound);

  /** Set ANNFixedRadiusTreeSearch. */
  void
  SetANNFixedRadiusTreeSearch(unsigned int kNearestNeighbors, double errorBound, double squaredRadius);

  /** Set ANNPriorityTreeSearch. */
  void
  SetANNPriorityTreeSearch(unsigned int kNearestNeighbors, double errorBound);

  /**
   * *** Standard metric stuff: ***
   */

  /** Initialize the metric. */
  void
  Initialize() override;

  /** Get the derivatives of the match measure. */
  void
  GetDerivative(const TransformParametersType & parameters, DerivativeType & Derivative) const override;

  /** Get the value for single valued optimizers. */
  MeasureType
  GetValue(const TransformParametersType & parameters) const override;

  /** Get value and derivatives for multiple valued optimizers. */
  void
  GetValueAndDerivative(const TransformParametersType & parameters,
                        MeasureType &                   Value,
                        DerivativeType &                Derivative) const override;

  /** Set alpha from alpha - mutual information. */
  itkSetClampMacro(Alpha, double, 0.0, 1.0);

  /** Get alpha from alpha - mutual information. */
  itkGetConstReferenceMacro(Alpha, double);

  /** Avoid division by a small number. */
  itkSetClampMacro(AvoidDivisionBy, double, 0.0, 1.0);

  /** Avoid division by a small number. */
  itkGetConstReferenceMacro(AvoidDivisionBy, double);

protected:
  /** Constructor. */
  KNNGraphAlphaMutualInformationImageToImageMetric();

  /** Destructor. */
  ~KNNGraphAlphaMutualInformationImageToImageMetric() override = default;

  /** PrintSelf. */
  void
  PrintSelf(std::ostream & os, Indent indent) const override;

  /** Member variables. */
  BinaryKNNTreePointer m_BinaryKNNTreeFixed{ nullptr };
  BinaryKNNTreePointer m_BinaryKNNTreeMoving{ nullptr };
  BinaryKNNTreePointer m_BinaryKNNTreeJoint{ nullptr };

  BinaryKNNTreeSearchPointer m_BinaryKNNTreeSearcherFixed{ nullptr };
  BinaryKNNTreeSearchPointer m_BinaryKNNTreeSearcherMoving{ nullptr };
  BinaryKNNTreeSearchPointer m_BinaryKNNTreeSearcherJoint{ nullptr };

  double m_Alpha{ 0.99 };
  double m_AvoidDivisionBy{ 1e-10 };

private:
  /** Typedef's for the computation of the derivative. */
  using typename Superclass::FixedImagePointType;
  using typename Superclass::MovingImagePointType;
  using typename Superclass::MovingImageDerivativeType;
  using typename Superclass::MovingImageContinuousIndexType;
  using TransformJacobianContainerType = std::vector<TransformJacobianType>;
  // typedef std::vector<ParameterIndexArrayType>           TransformJacobianIndicesContainerType;
  using TransformJacobianIndicesContainerType = std::vector<NonZeroJacobianIndicesType>;
  using SpatialDerivativeType = vnl_matrix<double>;
  using SpatialDerivativeContainerType = std::vector<SpatialDerivativeType>;

  /** This function takes the fixed image samples from the ImageSampler
   * and puts them in the listSampleFixed, together with the fixed feature
   * image samples. Also the corresponding moving image values and moving
   * feature values are computed and put into listSampleMoving. The
   * concatenation is put into listSampleJoint.
   * If desired, i.e. if doDerivative is true, then also things needed to
   * compute the derivative of the cost function to the transform parameters
   * are computed:
   * - The sparse Jacobian of the transformation (dT/dmu).
   * - The spatial derivatives of the moving (feature) images (dm/dx).
   */
  void
  ComputeListSampleValuesAndDerivativePlusJacobian(const ListSamplePointer &               listSampleFixed,
                                                   const ListSamplePointer &               listSampleMoving,
                                                   const ListSamplePointer &               listSampleJoint,
                                                   const bool                              doDerivative,
                                                   TransformJacobianContainerType &        jacobians,
                                                   TransformJacobianIndicesContainerType & jacobiansIndices,
                                                   SpatialDerivativeContainerType &        spatialDerivatives) const;

  /** This function calculates the spatial derivative of the
   * featureNr feature image at the point mappedPoint.
   * \todo move this to base class.
   */
  virtual void
  EvaluateMovingFeatureImageDerivatives(const MovingImagePointType & mappedPoint,
                                        SpatialDerivativeType &      featureGradients) const;

  /** This function essentially computes D1 - D2, but also takes
   * care of going from a sparse matrix (hence the indices) to a
   * full sized matrix.
   */
  virtual void
  UpdateDerivativeOfGammas(const SpatialDerivativeType & D1sparse,
                           const SpatialDerivativeType & D2sparse_M,
                           const SpatialDerivativeType & D2sparse_J,
                           // const ParameterIndexArrayType & D1indices,
                           // const ParameterIndexArrayType & D2indices_M,
                           // const ParameterIndexArrayType & D2indices_J,
                           const NonZeroJacobianIndicesType & D1indices,
                           const NonZeroJacobianIndicesType & D2indices_M,
                           const NonZeroJacobianIndicesType & D2indices_J,
                           const MeasurementVectorType &      diff_M,
                           const MeasurementVectorType &      diff_J,
                           const MeasureType &                distance_M,
                           const MeasureType &                distance_J,
                           DerivativeType &                   dGamma_M,
                           DerivativeType &                   dGamma_J) const;
};

} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#  include "itkKNNGraphAlphaMutualInformationImageToImageMetric.hxx"
#endif

#endif // end #ifndef itkKNNGraphAlphaMutualInformationImageToImageMetric_h