1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
|
/*=========================================================================
*
* Copyright UMC Utrecht and contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef _itkKNNGraphAlphaMutualInformationImageToImageMetric_hxx
#define _itkKNNGraphAlphaMutualInformationImageToImageMetric_hxx
#include "itkKNNGraphAlphaMutualInformationImageToImageMetric.h"
namespace itk
{
/**
* ************************ Constructor *************************
*/
template <class TFixedImage, class TMovingImage>
KNNGraphAlphaMutualInformationImageToImageMetric<TFixedImage,
TMovingImage>::KNNGraphAlphaMutualInformationImageToImageMetric()
{
this->SetComputeGradient(false); // don't use the default gradient
this->SetUseImageSampler(true);
} // end Constructor()
/**
* ************************ SetANNkDTree *************************
*/
template <class TFixedImage, class TMovingImage>
void
KNNGraphAlphaMutualInformationImageToImageMetric<TFixedImage, TMovingImage>::SetANNkDTree(unsigned int bucketSize,
std::string splittingRule)
{
this->SetANNkDTree(bucketSize, splittingRule, splittingRule, splittingRule);
} // end SetANNkDTree()
/**
* ************************ SetANNkDTree *************************
*/
template <class TFixedImage, class TMovingImage>
void
KNNGraphAlphaMutualInformationImageToImageMetric<TFixedImage, TMovingImage>::SetANNkDTree(
unsigned int bucketSize,
std::string splittingRuleFixed,
std::string splittingRuleMoving,
std::string splittingRuleJoint)
{
auto tmpPtrF = ANNkDTreeType::New();
auto tmpPtrM = ANNkDTreeType::New();
auto tmpPtrJ = ANNkDTreeType::New();
tmpPtrF->SetBucketSize(bucketSize);
tmpPtrM->SetBucketSize(bucketSize);
tmpPtrJ->SetBucketSize(bucketSize);
tmpPtrF->SetSplittingRule(splittingRuleFixed);
tmpPtrM->SetSplittingRule(splittingRuleMoving);
tmpPtrJ->SetSplittingRule(splittingRuleJoint);
this->m_BinaryKNNTreeFixed = tmpPtrF;
this->m_BinaryKNNTreeMoving = tmpPtrM;
this->m_BinaryKNNTreeJoint = tmpPtrJ;
} // end SetANNkDTree()
/**
* ************************ SetANNbdTree *************************
*/
template <class TFixedImage, class TMovingImage>
void
KNNGraphAlphaMutualInformationImageToImageMetric<TFixedImage, TMovingImage>::SetANNbdTree(unsigned int bucketSize,
std::string splittingRule,
std::string shrinkingRule)
{
this->SetANNbdTree(
bucketSize, splittingRule, splittingRule, splittingRule, shrinkingRule, shrinkingRule, shrinkingRule);
} // end SetANNbdTree()
/**
* ************************ SetANNbdTree *************************
*/
template <class TFixedImage, class TMovingImage>
void
KNNGraphAlphaMutualInformationImageToImageMetric<TFixedImage, TMovingImage>::SetANNbdTree(
unsigned int bucketSize,
std::string splittingRuleFixed,
std::string splittingRuleMoving,
std::string splittingRuleJoint,
std::string shrinkingRuleFixed,
std::string shrinkingRuleMoving,
std::string shrinkingRuleJoint)
{
auto tmpPtrF = ANNbdTreeType::New();
auto tmpPtrM = ANNbdTreeType::New();
auto tmpPtrJ = ANNbdTreeType::New();
tmpPtrF->SetBucketSize(bucketSize);
tmpPtrM->SetBucketSize(bucketSize);
tmpPtrJ->SetBucketSize(bucketSize);
tmpPtrF->SetSplittingRule(splittingRuleFixed);
tmpPtrM->SetSplittingRule(splittingRuleMoving);
tmpPtrJ->SetSplittingRule(splittingRuleJoint);
tmpPtrF->SetShrinkingRule(shrinkingRuleFixed);
tmpPtrM->SetShrinkingRule(shrinkingRuleMoving);
tmpPtrJ->SetShrinkingRule(shrinkingRuleJoint);
this->m_BinaryKNNTreeFixed = tmpPtrF;
this->m_BinaryKNNTreeMoving = tmpPtrM;
this->m_BinaryKNNTreeJoint = tmpPtrJ;
} // end SetANNbdTree()
/**
* ************************ SetANNBruteForceTree *************************
*/
template <class TFixedImage, class TMovingImage>
void
KNNGraphAlphaMutualInformationImageToImageMetric<TFixedImage, TMovingImage>::SetANNBruteForceTree()
{
this->m_BinaryKNNTreeFixed = ANNBruteForceTreeType::New();
this->m_BinaryKNNTreeMoving = ANNBruteForceTreeType::New();
this->m_BinaryKNNTreeJoint = ANNBruteForceTreeType::New();
} // end SetANNBruteForceTree()
/**
* ************************ SetANNStandardTreeSearch *************************
*/
template <class TFixedImage, class TMovingImage>
void
KNNGraphAlphaMutualInformationImageToImageMetric<TFixedImage, TMovingImage>::SetANNStandardTreeSearch(
unsigned int kNearestNeighbors,
double errorBound)
{
auto tmpPtrF = ANNStandardTreeSearchType::New();
auto tmpPtrM = ANNStandardTreeSearchType::New();
auto tmpPtrJ = ANNStandardTreeSearchType::New();
tmpPtrF->SetKNearestNeighbors(kNearestNeighbors);
tmpPtrM->SetKNearestNeighbors(kNearestNeighbors);
tmpPtrJ->SetKNearestNeighbors(kNearestNeighbors);
tmpPtrF->SetErrorBound(errorBound);
tmpPtrM->SetErrorBound(errorBound);
tmpPtrJ->SetErrorBound(errorBound);
this->m_BinaryKNNTreeSearcherFixed = tmpPtrF;
this->m_BinaryKNNTreeSearcherMoving = tmpPtrM;
this->m_BinaryKNNTreeSearcherJoint = tmpPtrJ;
} // end SetANNStandardTreeSearch()
/**
* ************************ SetANNFixedRadiusTreeSearch *************************
*/
template <class TFixedImage, class TMovingImage>
void
KNNGraphAlphaMutualInformationImageToImageMetric<TFixedImage, TMovingImage>::SetANNFixedRadiusTreeSearch(
unsigned int kNearestNeighbors,
double errorBound,
double squaredRadius)
{
auto tmpPtrF = ANNFixedRadiusTreeSearchType::New();
auto tmpPtrM = ANNFixedRadiusTreeSearchType::New();
auto tmpPtrJ = ANNFixedRadiusTreeSearchType::New();
tmpPtrF->SetKNearestNeighbors(kNearestNeighbors);
tmpPtrM->SetKNearestNeighbors(kNearestNeighbors);
tmpPtrJ->SetKNearestNeighbors(kNearestNeighbors);
tmpPtrF->SetErrorBound(errorBound);
tmpPtrM->SetErrorBound(errorBound);
tmpPtrJ->SetErrorBound(errorBound);
tmpPtrF->SetSquaredRadius(squaredRadius);
tmpPtrM->SetSquaredRadius(squaredRadius);
tmpPtrJ->SetSquaredRadius(squaredRadius);
this->m_BinaryKNNTreeSearcherFixed = tmpPtrF;
this->m_BinaryKNNTreeSearcherMoving = tmpPtrM;
this->m_BinaryKNNTreeSearcherJoint = tmpPtrJ;
} // end SetANNFixedRadiusTreeSearch()
/**
* ************************ SetANNPriorityTreeSearch *************************
*/
template <class TFixedImage, class TMovingImage>
void
KNNGraphAlphaMutualInformationImageToImageMetric<TFixedImage, TMovingImage>::SetANNPriorityTreeSearch(
unsigned int kNearestNeighbors,
double errorBound)
{
auto tmpPtrF = ANNPriorityTreeSearchType::New();
auto tmpPtrM = ANNPriorityTreeSearchType::New();
auto tmpPtrJ = ANNPriorityTreeSearchType::New();
tmpPtrF->SetKNearestNeighbors(kNearestNeighbors);
tmpPtrM->SetKNearestNeighbors(kNearestNeighbors);
tmpPtrJ->SetKNearestNeighbors(kNearestNeighbors);
tmpPtrF->SetErrorBound(errorBound);
tmpPtrM->SetErrorBound(errorBound);
tmpPtrJ->SetErrorBound(errorBound);
this->m_BinaryKNNTreeSearcherFixed = tmpPtrF;
this->m_BinaryKNNTreeSearcherMoving = tmpPtrM;
this->m_BinaryKNNTreeSearcherJoint = tmpPtrJ;
} // end SetANNPriorityTreeSearch()
/**
* ********************* Initialize *****************************
*/
template <class TFixedImage, class TMovingImage>
void
KNNGraphAlphaMutualInformationImageToImageMetric<TFixedImage, TMovingImage>::Initialize()
{
/** Call the superclass. */
this->Superclass::Initialize();
/** Check if the kNN trees are set. We only need to check the fixed tree. */
if (!this->m_BinaryKNNTreeFixed)
{
itkExceptionMacro("ERROR: The kNN tree is not set. ");
}
/** Check if the kNN tree searchers are set. We only need to check the fixed searcher. */
if (!this->m_BinaryKNNTreeSearcherFixed)
{
itkExceptionMacro("ERROR: The kNN tree searcher is not set. ");
}
} // end Initialize()
/**
* ************************ GetValue *************************
*/
template <class TFixedImage, class TMovingImage>
auto
KNNGraphAlphaMutualInformationImageToImageMetric<TFixedImage, TMovingImage>::GetValue(
const TransformParametersType & parameters) const -> MeasureType
{
/** Initialize some variables. */
MeasureType measure{};
/** Make sure the transform parameters are up to date. */
this->SetTransformParameters(parameters);
/**
* *************** Create the three list samples ******************
*/
/** Create list samples. */
ListSamplePointer listSampleFixed = ListSampleType::New();
ListSamplePointer listSampleMoving = ListSampleType::New();
ListSamplePointer listSampleJoint = ListSampleType::New();
/** Compute the three list samples. */
TransformJacobianContainerType dummyJacobianContainer;
TransformJacobianIndicesContainerType dummyJacobianIndicesContainer;
SpatialDerivativeContainerType dummySpatialDerivativesContainer;
this->ComputeListSampleValuesAndDerivativePlusJacobian(listSampleFixed,
listSampleMoving,
listSampleJoint,
false,
dummyJacobianContainer,
dummyJacobianIndicesContainer,
dummySpatialDerivativesContainer);
/** Check if enough samples were valid. */
unsigned long size = this->GetImageSampler()->GetOutput()->Size();
this->CheckNumberOfSamples(size, Superclass::m_NumberOfPixelsCounted);
/**
* *************** Generate the three trees ******************
*
* and connect them to the searchers.
*/
/** Generate the tree for the fixed image samples. */
this->m_BinaryKNNTreeFixed->SetSample(listSampleFixed);
this->m_BinaryKNNTreeFixed->GenerateTree();
/** Generate the tree for the moving image samples. */
this->m_BinaryKNNTreeMoving->SetSample(listSampleMoving);
this->m_BinaryKNNTreeMoving->GenerateTree();
/** Generate the tree for the joint image samples. */
this->m_BinaryKNNTreeJoint->SetSample(listSampleJoint);
this->m_BinaryKNNTreeJoint->GenerateTree();
/** Initialize tree searchers. */
this->m_BinaryKNNTreeSearcherFixed->SetBinaryTree(this->m_BinaryKNNTreeFixed);
this->m_BinaryKNNTreeSearcherMoving->SetBinaryTree(this->m_BinaryKNNTreeMoving);
this->m_BinaryKNNTreeSearcherJoint->SetBinaryTree(this->m_BinaryKNNTreeJoint);
/**
* *************** Estimate the \alpha MI ******************
*
* This is done by searching for the nearest neighbours of each point
* and calculating the distances.
*
* The estimate for the alpha - mutual information is given by:
*
* \alpha MI = 1 / ( \alpha - 1 ) * \log 1/n^\alpha * \sum_{i=1}^n \sum_{p=1}^k
* ( jointLength / \sqrt( fixedLength * movingLength ) )^(2 \gamma),
*
* where
* - \alpha is set by the user and refers to \alpha - mutual information
* - n is the number of samples
* - k is the number of nearest neighbours
* - jointLength is the distances to one of the nearest neighbours in listSampleJoint
* - fixedLength is the distances to one of the nearest neighbours in listSampleFixed
* - movingLength is the distances to one of the nearest neighbours in listSampleMoving
* - \gamma relates to the distance metric and relates to \alpha as:
*
* \gamma = d * ( 1 - \alpha ),
*
* where d is the dimension of the feature space.
*
* In the original paper it is assumed that the mutual information of
* two feature sets of equal dimension is calculated. If this is not
* true, then
*
* \gamma = ( ( d1 + d2 ) / 2 ) * ( 1 - alpha ),
*
* where d1 and d2 are the possibly different dimensions of the two feature sets.
*/
/** Temporary variables. */
using AccumulateType = typename NumericTraits<MeasureType>::AccumulateType;
MeasurementVectorType z_F, z_M, z_J;
IndexArrayType indices_F, indices_M, indices_J;
DistanceArrayType distances_F, distances_M, distances_J;
MeasureType H, G;
AccumulateType sumG{};
/** Get the size of the feature vectors. */
unsigned int fixedSize = this->GetNumberOfFixedImages();
unsigned int movingSize = this->GetNumberOfMovingImages();
unsigned int jointSize = fixedSize + movingSize;
/** Get the number of neighbours and \gamma. */
unsigned int k = this->m_BinaryKNNTreeSearcherFixed->GetKNearestNeighbors();
double twoGamma = jointSize * (1.0 - this->m_Alpha);
/** Loop over all query points, i.e. all samples. */
for (unsigned long i = 0; i < Superclass::m_NumberOfPixelsCounted; ++i)
{
/** Get the i-th query point. */
listSampleFixed->GetMeasurementVector(i, z_F);
listSampleMoving->GetMeasurementVector(i, z_M);
listSampleJoint->GetMeasurementVector(i, z_J);
/** Search for the K nearest neighbours of the current query point. */
this->m_BinaryKNNTreeSearcherFixed->Search(z_F, indices_F, distances_F);
this->m_BinaryKNNTreeSearcherMoving->Search(z_M, indices_M, distances_M);
this->m_BinaryKNNTreeSearcherJoint->Search(z_J, indices_J, distances_J);
/** Add the distances between the points to get the total graph length.
* The outcommented implementation calculates: sum J/sqrt(F*M)
*
for ( unsigned int j = 0; j < K; j++ )
{
enumerator = std::sqrt( distsJ[ j ] );
denominator = std::sqrt( std::sqrt( distsF[ j ] ) * std::sqrt( distsM[ j ] ) );
if ( denominator > 1e-14 )
{
contribution += std::pow( enumerator / denominator, twoGamma );
}
}*/
/** Add the distances of all neighbours of the query point,
* for the three graphs:
* sum M / sqrt( sum F * sum M)
*/
/** Variables to compute the measure. */
AccumulateType Gamma_F{};
AccumulateType Gamma_M{};
AccumulateType Gamma_J{};
/** Loop over the neighbours. */
for (unsigned int p = 0; p < k; ++p)
{
Gamma_F += std::sqrt(distances_F[p]);
Gamma_M += std::sqrt(distances_M[p]);
Gamma_J += std::sqrt(distances_J[p]);
} // end loop over the k neighbours
/** Calculate the contribution of this query point. */
H = std::sqrt(Gamma_F * Gamma_M);
if (H > this->m_AvoidDivisionBy)
{
/** Compute some sums. */
G = Gamma_J / H;
sumG += std::pow(G, twoGamma);
}
} // end looping over all query points
/**
* *************** Finally, calculate the metric value \alpha MI ******************
*/
double n, number;
if (sumG > this->m_AvoidDivisionBy)
{
/** Compute the measure. */
n = static_cast<double>(Superclass::m_NumberOfPixelsCounted);
number = std::pow(n, this->m_Alpha);
measure = std::log(sumG / number) / (this->m_Alpha - 1.0);
}
/** Return the negative alpha - mutual information. */
return -measure;
} // end GetValue()
/**
* ************************ GetDerivative *************************
*/
template <class TFixedImage, class TMovingImage>
void
KNNGraphAlphaMutualInformationImageToImageMetric<TFixedImage, TMovingImage>::GetDerivative(
const TransformParametersType & parameters,
DerivativeType & derivative) const
{
/** When the derivative is calculated, all information for calculating
* the metric value is available. It does not cost anything to calculate
* the metric value now. Therefore, we have chosen to only implement the
* GetValueAndDerivative(), supplying it with a dummy value variable.
*/
MeasureType dummyvalue{};
this->GetValueAndDerivative(parameters, dummyvalue, derivative);
} // end GetDerivative()
/**
* ************************ GetValueAndDerivative *************************
*/
template <class TFixedImage, class TMovingImage>
void
KNNGraphAlphaMutualInformationImageToImageMetric<TFixedImage, TMovingImage>::GetValueAndDerivative(
const TransformParametersType & parameters,
MeasureType & value,
DerivativeType & derivative) const
{
/** Initialize some variables. */
MeasureType measure{};
derivative.set_size(this->GetNumberOfParameters());
derivative.Fill(DerivativeValueType{});
/** Call non-thread-safe stuff, such as:
* this->SetTransformParameters( parameters );
* this->GetImageSampler()->Update();
* Because of these calls GetValueAndDerivative itself is not thread-safe,
* so cannot be called multiple times simultaneously.
* This is however needed in the CombinationImageToImageMetric.
* In that case, you need to:
* - switch the use of this function to on, using m_UseMetricSingleThreaded = true
* - call BeforeThreadedGetValueAndDerivative once (single-threaded) before
* calling GetValueAndDerivative
* - switch the use of this function to off, using m_UseMetricSingleThreaded = false
* - Now you can call GetValueAndDerivative multi-threaded.
*/
this->BeforeThreadedGetValueAndDerivative(parameters);
/**
* *************** Create the three list samples ******************
*/
/** Create list samples. */
ListSamplePointer listSampleFixed = ListSampleType::New();
ListSamplePointer listSampleMoving = ListSampleType::New();
ListSamplePointer listSampleJoint = ListSampleType::New();
/** Compute the three list samples and the derivatives. */
TransformJacobianContainerType jacobianContainer;
TransformJacobianIndicesContainerType jacobianIndicesContainer;
SpatialDerivativeContainerType spatialDerivativesContainer;
this->ComputeListSampleValuesAndDerivativePlusJacobian(listSampleFixed,
listSampleMoving,
listSampleJoint,
true,
jacobianContainer,
jacobianIndicesContainer,
spatialDerivativesContainer);
/** Check if enough samples were valid. */
unsigned long size = this->GetImageSampler()->GetOutput()->Size();
this->CheckNumberOfSamples(size, Superclass::m_NumberOfPixelsCounted);
/**
* *************** Generate the three trees ******************
*
* and connect them to the searchers.
*/
/** Generate the tree for the fixed image samples. */
this->m_BinaryKNNTreeFixed->SetSample(listSampleFixed);
this->m_BinaryKNNTreeFixed->GenerateTree();
/** Generate the tree for the moving image samples. */
this->m_BinaryKNNTreeMoving->SetSample(listSampleMoving);
this->m_BinaryKNNTreeMoving->GenerateTree();
/** Generate the tree for the joint image samples. */
this->m_BinaryKNNTreeJoint->SetSample(listSampleJoint);
this->m_BinaryKNNTreeJoint->GenerateTree();
/** Initialize tree searchers. */
this->m_BinaryKNNTreeSearcherFixed->SetBinaryTree(this->m_BinaryKNNTreeFixed);
this->m_BinaryKNNTreeSearcherMoving->SetBinaryTree(this->m_BinaryKNNTreeMoving);
this->m_BinaryKNNTreeSearcherJoint->SetBinaryTree(this->m_BinaryKNNTreeJoint);
/**
* *************** Estimate the \alpha MI and its derivatives ******************
*
* This is done by searching for the nearest neighbours of each point
* and calculating the distances.
*
* The estimate for the alpha - mutual information is given by:
*
* \alpha MI = 1 / ( \alpha - 1 ) * \log 1/n^\alpha * \sum_{i=1}^n \sum_{p=1}^k
* ( jointLength / \sqrt( fixedLength * movingLength ) )^(2 \gamma),
*
* where
* - \alpha is set by the user and refers to \alpha - mutual information
* - n is the number of samples
* - k is the number of nearest neighbours
* - jointLength is the distances to one of the nearest neighbours in listSampleJoint
* - fixedLength is the distances to one of the nearest neighbours in listSampleFixed
* - movingLength is the distances to one of the nearest neighbours in listSampleMoving
* - \gamma relates to the distance metric and relates to \alpha as:
*
* \gamma = d * ( 1 - \alpha ),
*
* where d is the dimension of the feature space.
*
* In the original paper it is assumed that the mutual information of
* two feature sets of equal dimension is calculated. If not this is not
* true, then
*
* \gamma = ( ( d1 + d2 ) / 2 ) * ( 1 - alpha ),
*
* where d1 and d2 are the possibly different dimensions of the two feature sets.
*/
/** Temporary variables. */
using AccumulateType = typename NumericTraits<MeasureType>::AccumulateType;
MeasurementVectorType z_F, z_M, z_J, z_M_ip, z_J_ip, diff_M, diff_J;
IndexArrayType indices_F, indices_M, indices_J;
DistanceArrayType distances_F, distances_M, distances_J;
MeasureType distance_F, distance_M, distance_J;
MeasureType H, G, Gpow;
AccumulateType sumG{};
DerivativeType contribution(this->GetNumberOfParameters(), DerivativeValueType{});
DerivativeType dGamma_M(this->GetNumberOfParameters());
DerivativeType dGamma_J(this->GetNumberOfParameters());
/** Get the size of the feature vectors. */
unsigned int fixedSize = this->GetNumberOfFixedImages();
unsigned int movingSize = this->GetNumberOfMovingImages();
unsigned int jointSize = fixedSize + movingSize;
/** Get the number of neighbours and \gamma. */
unsigned int k = this->m_BinaryKNNTreeSearcherFixed->GetKNearestNeighbors();
double twoGamma = jointSize * (1.0 - this->m_Alpha);
/** Loop over all query points, i.e. all samples. */
for (unsigned long i = 0; i < Superclass::m_NumberOfPixelsCounted; ++i)
{
/** Get the i-th query point. */
listSampleFixed->GetMeasurementVector(i, z_F);
listSampleMoving->GetMeasurementVector(i, z_M);
listSampleJoint->GetMeasurementVector(i, z_J);
/** Search for the k nearest neighbours of the current query point. */
this->m_BinaryKNNTreeSearcherFixed->Search(z_F, indices_F, distances_F);
this->m_BinaryKNNTreeSearcherMoving->Search(z_M, indices_M, distances_M);
this->m_BinaryKNNTreeSearcherJoint->Search(z_J, indices_J, distances_J);
/** Variables to compute the measure and its derivative. */
AccumulateType Gamma_F{};
AccumulateType Gamma_M{};
AccumulateType Gamma_J{};
SpatialDerivativeType D1sparse, D2sparse_M, D2sparse_J;
D1sparse = spatialDerivativesContainer[i] * jacobianContainer[i];
dGamma_M.Fill(DerivativeValueType{});
dGamma_J.Fill(DerivativeValueType{});
/** Loop over the neighbours. */
for (unsigned int p = 0; p < k; ++p)
{
/** Get the neighbour point z_ip^M. */
listSampleMoving->GetMeasurementVector(indices_M[p], z_M_ip);
listSampleMoving->GetMeasurementVector(indices_J[p], z_J_ip);
/** Get the distances. */
distance_F = std::sqrt(distances_F[p]);
distance_M = std::sqrt(distances_M[p]);
distance_J = std::sqrt(distances_J[p]);
/** Compute Gamma's. */
Gamma_F += distance_F;
Gamma_M += distance_M;
Gamma_J += distance_J;
/** Get the difference of z_ip^M with z_i^M. */
diff_M = z_M - z_M_ip;
diff_J = z_M - z_J_ip;
/** Compute derivatives. */
D2sparse_M = spatialDerivativesContainer[indices_M[p]] * jacobianContainer[indices_M[p]];
D2sparse_J = spatialDerivativesContainer[indices_J[p]] * jacobianContainer[indices_J[p]];
/** Update the dGamma's. */
this->UpdateDerivativeOfGammas(D1sparse,
D2sparse_M,
D2sparse_J,
jacobianIndicesContainer[i],
jacobianIndicesContainer[indices_M[p]],
jacobianIndicesContainer[indices_J[p]],
diff_M,
diff_J,
distance_M,
distance_J,
dGamma_M,
dGamma_J);
} // end loop over the k neighbours
/** Compute contributions. */
H = std::sqrt(Gamma_F * Gamma_M);
if (H > this->m_AvoidDivisionBy)
{
/** Compute some sums. */
G = Gamma_J / H;
sumG += std::pow(G, twoGamma);
/** Compute the contribution to the derivative. */
Gpow = std::pow(G, twoGamma - 1.0);
contribution += (Gpow / H) * (dGamma_J - (0.5 * Gamma_J / Gamma_M) * dGamma_M);
}
} // end looping over all query points
/**
* *************** Finally, calculate the metric value and derivative ******************
*/
/** Compute the value. */
double n, number;
if (sumG > this->m_AvoidDivisionBy)
{
/** Compute the measure. */
n = static_cast<double>(Superclass::m_NumberOfPixelsCounted);
number = std::pow(n, this->m_Alpha);
measure = std::log(sumG / number) / (this->m_Alpha - 1.0);
/** Compute the derivative (-2.0 * d = -jointSize). */
derivative = (static_cast<AccumulateType>(jointSize) / sumG) * contribution;
}
value = -measure;
} // end GetValueAndDerivative()
/**
* ************************ ComputeListSampleValuesAndDerivativePlusJacobian *************************
*/
template <class TFixedImage, class TMovingImage>
void
KNNGraphAlphaMutualInformationImageToImageMetric<TFixedImage, TMovingImage>::
ComputeListSampleValuesAndDerivativePlusJacobian(const ListSamplePointer & listSampleFixed,
const ListSamplePointer & listSampleMoving,
const ListSamplePointer & listSampleJoint,
const bool doDerivative,
TransformJacobianContainerType & jacobianContainer,
TransformJacobianIndicesContainerType & jacobianIndicesContainer,
SpatialDerivativeContainerType & spatialDerivativesContainer) const
{
/** Initialize. */
Superclass::m_NumberOfPixelsCounted = 0;
jacobianContainer.clear();
jacobianIndicesContainer.clear();
spatialDerivativesContainer.clear();
/** Get a handle to the sample container. */
ImageSampleContainerPointer sampleContainer = this->GetImageSampler()->GetOutput();
const unsigned long nrOfRequestedSamples = sampleContainer->Size();
/** Get the size of the feature vectors. */
const unsigned int fixedSize = this->GetNumberOfFixedImages();
const unsigned int movingSize = this->GetNumberOfMovingImages();
const unsigned int jointSize = fixedSize + movingSize;
/** Resize the list samples so that enough memory is allocated. */
listSampleFixed->SetMeasurementVectorSize(fixedSize);
listSampleFixed->Resize(nrOfRequestedSamples);
listSampleMoving->SetMeasurementVectorSize(movingSize);
listSampleMoving->Resize(nrOfRequestedSamples);
listSampleJoint->SetMeasurementVectorSize(jointSize);
listSampleJoint->Resize(nrOfRequestedSamples);
/** Potential speedup: it avoids re-allocations. I noticed performance
* gains when nrOfRequestedSamples is about 10000 or higher.
*/
jacobianContainer.reserve(nrOfRequestedSamples);
jacobianIndicesContainer.reserve(nrOfRequestedSamples);
spatialDerivativesContainer.reserve(nrOfRequestedSamples);
/** Create variables to store intermediate results. */
RealType movingImageValue;
double fixedFeatureValue = 0.0;
double movingFeatureValue = 0.0;
NonZeroJacobianIndicesType nzji(Superclass::m_AdvancedTransform->GetNumberOfNonZeroJacobianIndices());
TransformJacobianType jacobian;
/** Loop over the fixed image samples to calculate the list samples. */
unsigned int ii = 0;
for (const auto & fixedImageSample : *sampleContainer)
{
/** Read fixed coordinates and initialize some variables. */
const FixedImagePointType & fixedPoint = fixedImageSample.m_ImageCoordinates;
/** Transform point. */
const MovingImagePointType mappedPoint = this->TransformPoint(fixedPoint);
/** Check if point is inside all moving masks. */
bool sampleOk = this->IsInsideMovingMask(mappedPoint);
/** Compute the moving image value M(T(x)) and possibly the
* derivative dM/dx and check if the point is inside all
* moving images buffers.
*/
MovingImageDerivativeType movingImageDerivative;
if (sampleOk)
{
if (doDerivative)
{
sampleOk = this->Superclass::EvaluateMovingImageValueAndDerivative(
mappedPoint, movingImageValue, &movingImageDerivative);
}
else
{
sampleOk = this->Superclass::EvaluateMovingImageValueAndDerivative(mappedPoint, movingImageValue, nullptr);
}
}
/** This is a valid sample: in this if-statement the actual
* addition to the list samples is done.
*/
if (sampleOk)
{
/** Get the fixed image value. */
const auto fixedImageValue = static_cast<RealType>(fixedImageSample.m_ImageValue);
/** Add the samples to the ListSampleCarrays. */
listSampleFixed->SetMeasurement(Superclass::m_NumberOfPixelsCounted, 0, fixedImageValue);
listSampleMoving->SetMeasurement(Superclass::m_NumberOfPixelsCounted, 0, movingImageValue);
listSampleJoint->SetMeasurement(Superclass::m_NumberOfPixelsCounted, 0, fixedImageValue);
listSampleJoint->SetMeasurement(
Superclass::m_NumberOfPixelsCounted, this->GetNumberOfFixedImages(), movingImageValue);
/** Get and set the values of the fixed feature images. */
for (unsigned int j = 1; j < this->GetNumberOfFixedImages(); ++j)
{
fixedFeatureValue = this->m_FixedImageInterpolatorVector[j]->Evaluate(fixedPoint);
listSampleFixed->SetMeasurement(Superclass::m_NumberOfPixelsCounted, j, fixedFeatureValue);
listSampleJoint->SetMeasurement(Superclass::m_NumberOfPixelsCounted, j, fixedFeatureValue);
}
/** Get and set the values of the moving feature images. */
for (unsigned int j = 1; j < this->GetNumberOfMovingImages(); ++j)
{
movingFeatureValue = this->m_InterpolatorVector[j]->Evaluate(mappedPoint);
listSampleMoving->SetMeasurement(Superclass::m_NumberOfPixelsCounted, j, movingFeatureValue);
listSampleJoint->SetMeasurement(
Superclass::m_NumberOfPixelsCounted, j + this->GetNumberOfFixedImages(), movingFeatureValue);
}
/** Compute additional stuff for the computation of the derivative, if necessary.
* - the Jacobian of the transform: dT/dmu(x_i).
* - the spatial derivative of all moving feature images: dz_q^m/dx(T(x_i)).
*/
if (doDerivative)
{
/** Get the TransformJacobian dT/dmu. */
this->EvaluateTransformJacobian(fixedPoint, jacobian, nzji);
jacobianContainer.push_back(jacobian);
jacobianIndicesContainer.push_back(nzji);
/** Get the spatial derivative of the moving image. */
SpatialDerivativeType spatialDerivatives(this->GetNumberOfMovingImages(), this->FixedImageDimension);
spatialDerivatives.set_row(0, movingImageDerivative.GetDataPointer());
/** Get the spatial derivatives of the moving feature images. */
SpatialDerivativeType movingFeatureImageDerivatives(this->GetNumberOfMovingImages() - 1,
this->FixedImageDimension);
this->EvaluateMovingFeatureImageDerivatives(mappedPoint, movingFeatureImageDerivatives);
spatialDerivatives.update(movingFeatureImageDerivatives, 1, 0);
/** Put the spatial derivatives of this sample into the container. */
spatialDerivativesContainer.push_back(spatialDerivatives);
} // end if doDerivative
/** Update the NumberOfPixelsCounted. */
Superclass::m_NumberOfPixelsCounted++;
++ii;
} // end if sampleOk
} // end for loop over the image sample container
/** The listSamples are of size sampleContainer->Size(). However, not all of
* those points made it to the respective list samples. Therefore, we set
* the actual number of pixels in the sample container, so that the binary
* trees know where to loop over. This must not be forgotten!
*/
listSampleFixed->SetActualSize(Superclass::m_NumberOfPixelsCounted);
listSampleMoving->SetActualSize(Superclass::m_NumberOfPixelsCounted);
listSampleJoint->SetActualSize(Superclass::m_NumberOfPixelsCounted);
} // end ComputeListSampleValuesAndDerivativePlusJacobian()
/**
* ************************ EvaluateMovingFeatureImageDerivatives *************************
*/
template <class TFixedImage, class TMovingImage>
void
KNNGraphAlphaMutualInformationImageToImageMetric<TFixedImage, TMovingImage>::EvaluateMovingFeatureImageDerivatives(
const MovingImagePointType & mappedPoint,
SpatialDerivativeType & featureGradients) const
{
/** Convert point to a continous index. */
MovingImageContinuousIndexType cindex;
this->m_Interpolator->ConvertPointToContinuousIndex(mappedPoint, cindex);
/** Compute the spatial derivative for all feature images:
* - either by calling a special function that only B-spline
* interpolators have,
* - or by using a finite difference approximation of the
* pre-computed gradient images.
* \todo: for now we only implement the first option.
*/
if (this->m_InterpolatorsAreBSpline && !Superclass::m_ComputeGradient)
{
/** Computed moving image gradient using derivative B-spline kernel. */
MovingImageDerivativeType gradient;
for (unsigned int i = 1; i < this->GetNumberOfMovingImages(); ++i)
{
/** Compute the gradient at feature image i. */
gradient = this->m_BSplineInterpolatorVector[i]->EvaluateDerivativeAtContinuousIndex(cindex);
/** Set the gradient into the matrix. */
featureGradients.set_row(i - 1, gradient.GetDataPointer());
} // end for-loop
} // end if
// else
// {
// /** Get the gradient by NearestNeighboorInterpolation of the gradient image.
// * It is assumed that the gradient image is computed beforehand.
// */
//
// /** Round the continuous index to the nearest neighbour. */
// MovingImageIndexType index;
// for ( unsigned int j = 0; j < MovingImageDimension; j++ )
// {
// index[ j ] = static_cast<long>( vnl_math::rnd( cindex[ j ] ) );
// }
//
// MovingImageDerivativeType gradient;
// for ( unsigned int i = 0; i < this->m_NumberOfMovingFeatureImages; ++i )
// {
// /** Compute the gradient at feature image i. */
// gradient = this->m_GradientFeatureImage[ i ]->GetPixel( index );
//
// /** Set the gradient into the matrix. */
// featureGradients.set_column( i, gradient.GetDataPointer() );
// } // end for-loop
// } // end if
} // end EvaluateMovingFeatureImageDerivatives()
/**
* ************************ UpdateDerivativeOfGammas *************************
*/
template <class TFixedImage, class TMovingImage>
void
KNNGraphAlphaMutualInformationImageToImageMetric<TFixedImage, TMovingImage>::UpdateDerivativeOfGammas(
const SpatialDerivativeType & D1sparse,
const SpatialDerivativeType & D2sparse_M,
const SpatialDerivativeType & D2sparse_J,
const NonZeroJacobianIndicesType & D1indices,
const NonZeroJacobianIndicesType & D2indices_M,
const NonZeroJacobianIndicesType & D2indices_J,
const MeasurementVectorType & diff_M,
const MeasurementVectorType & diff_J,
const MeasureType & distance_M,
const MeasureType & distance_J,
DerivativeType & dGamma_M,
DerivativeType & dGamma_J) const
{
/** Make temporary copies of diff, since post_multiply changes diff. */
vnl_vector<double> tmpM1(diff_M);
vnl_vector<double> tmpM2(diff_M);
vnl_vector<double> tmpJ1(diff_J);
vnl_vector<double> tmpJ2(diff_J);
/** Divide by the distance first, so that diff's are normalised.
* Dividing at this place is much faster, since distance_? is a small
* vector, i.e. only the size of the number of features (e.g. 6).
* Dividing tmp?sparse_? is slower, since it is a vector of the size of
* the B-spline support, so in 3D and spline order 3: (3 + 1)^3 * 3 = 192.
* On an example registration it gave me a speedup of about 25%!
* Both methods should return the same results, but due to numerical
* stuff the metric value and derivative start to deviate after a couple
* of iterations.
*/
if (distance_M > this->m_AvoidDivisionBy)
{
tmpM1 /= distance_M;
tmpM2 /= distance_M;
}
if (distance_J > this->m_AvoidDivisionBy)
{
tmpJ1 /= distance_J;
tmpJ2 /= distance_J;
}
/** Compute sparse intermediary results. */
vnl_vector<double> tmp1sparse_M = tmpM1.post_multiply(D1sparse);
vnl_vector<double> tmp1sparse_J = tmpJ1.post_multiply(D1sparse);
vnl_vector<double> tmp2sparse_M = tmpM2.post_multiply(D2sparse_M);
vnl_vector<double> tmp2sparse_J = tmpJ2.post_multiply(D2sparse_J);
/** Update dGamma_M. */
if (distance_M > this->m_AvoidDivisionBy)
{
for (unsigned int i = 0; i < D1indices.size(); ++i)
{
dGamma_M[D1indices[i]] += tmp1sparse_M[i];
}
for (unsigned int i = 0; i < D2indices_M.size(); ++i)
{
dGamma_M[D2indices_M[i]] -= tmp2sparse_M[i];
}
}
/** Update dGamma_J. */
if (distance_J > this->m_AvoidDivisionBy)
{
for (unsigned int i = 0; i < D1indices.size(); ++i)
{
dGamma_J[D1indices[i]] += tmp1sparse_J[i];
}
for (unsigned int i = 0; i < D2indices_J.size(); ++i)
{
dGamma_J[D2indices_J[i]] -= tmp2sparse_J[i];
}
}
} // end UpdateDerivativeOfGammas()
/**
* ************************ PrintSelf *************************
*/
template <class TFixedImage, class TMovingImage>
void
KNNGraphAlphaMutualInformationImageToImageMetric<TFixedImage, TMovingImage>::PrintSelf(std::ostream & os,
Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "Alpha: " << this->m_Alpha << std::endl;
os << indent << "AvoidDivisionBy: " << this->m_AvoidDivisionBy << std::endl;
os << indent << "BinaryKNNTreeFixed: " << this->m_BinaryKNNTreeFixed.GetPointer() << std::endl;
os << indent << "BinaryKNNTreeMoving: " << this->m_BinaryKNNTreeMoving.GetPointer() << std::endl;
os << indent << "BinaryKNNTreeJoint: " << this->m_BinaryKNNTreeJoint.GetPointer() << std::endl;
os << indent << "BinaryKNNTreeSearcherFixed: " << this->m_BinaryKNNTreeSearcherFixed.GetPointer() << std::endl;
os << indent << "BinaryKNNTreeSearcherMoving: " << this->m_BinaryKNNTreeSearcherMoving.GetPointer() << std::endl;
os << indent << "BinaryKNNTreeSearcherJoint: " << this->m_BinaryKNNTreeSearcherJoint.GetPointer() << std::endl;
} // end PrintSelf()
} // end namespace itk
#endif // end #ifndef _itkKNNGraphAlphaMutualInformationImageToImageMetric_hxx
|