1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
/*=========================================================================
*
* Copyright UMC Utrecht and contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkParzenWindowNormalizedMutualInformationImageToImageMetric_h
#define itkParzenWindowNormalizedMutualInformationImageToImageMetric_h
#include "itkParzenWindowHistogramImageToImageMetric.h"
namespace itk
{
/**
* \class ParzenWindowNormalizedMutualInformationImageToImageMetric
* \brief Computes the normalized mutual information between two images to be
* registered using a method based on Thevenaz&Unser [3].
*
* ParzenWindowNormalizedMutualInformationImageToImageMetric computes the
* normalized mutual information between a fixed and moving image to be registered.
* The calculations are based on the method of Mattes et al [1,2]
* and Thevenaz&Unser [3], where the probability density distribution
* are estimated using Parzen histograms. The expression for the
* derivative is derived following [3].
*
* Construction of the PDFs is implemented in the superclass
* ParzenWindowHistogramImageToImageMetric.
*
* This implementation of the NormalizedMutualInformation is based on the
* AdvancedImageToImageMetric, which means that:
* \li It uses the ImageSampler-framework
* \li It makes use of the compact support of B-splines, in case of B-spline transforms.
* \li Image derivatives are computed using either the B-spline interpolator's implementation
* or by nearest neighbor interpolation of a precomputed central difference image.
* \li A minimum number of samples that should map within the moving image (mask) can be specified.
*
* Notes:\n
* 1. This class returns the negative normalized mutual information value.\n
* 2. This class in not thread safe due the private data structures
* used to the store the marginal and joint pdfs.
*
* References:\n
* [1] "Nonrigid multimodality image registration"\n
* D. Mattes, D. R. Haynor, H. Vesselle, T. Lewellen and W. Eubank\n
* Medical Imaging 2001: Image Processing, 2001, pp. 1609-1620.\n
* [2] "PET-CT Image Registration in the Chest Using Free-form Deformations"\n
* D. Mattes, D. R. Haynor, H. Vesselle, T. Lewellen and W. Eubank\n
* IEEE Transactions in Medical Imaging. To Appear.\n
* [3] "Optimization of Mutual Information for MultiResolution Image
* Registration"\n
* P. Thevenaz and M. Unser\n
* IEEE Transactions in Image Processing, 9(12) December 2000.\n
*
* \ingroup Metrics
* \sa ParzenWindowHistogramImageToImageMetric
*/
template <class TFixedImage, class TMovingImage>
class ITK_TEMPLATE_EXPORT ParzenWindowNormalizedMutualInformationImageToImageMetric
: public ParzenWindowHistogramImageToImageMetric<TFixedImage, TMovingImage>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(ParzenWindowNormalizedMutualInformationImageToImageMetric);
/** Standard class typedefs. */
using Self = ParzenWindowNormalizedMutualInformationImageToImageMetric;
using Superclass = ParzenWindowHistogramImageToImageMetric<TFixedImage, TMovingImage>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro(ParzenWindowNormalizedMutualInformationImageToImageMetric, ParzenWindowHistogramImageToImageMetric);
/** Typedefs from the superclass. */
using typename Superclass::CoordinateRepresentationType;
using typename Superclass::MovingImageType;
using typename Superclass::MovingImagePixelType;
using typename Superclass::MovingImageConstPointer;
using typename Superclass::FixedImageType;
using typename Superclass::FixedImageConstPointer;
using typename Superclass::FixedImageRegionType;
using typename Superclass::TransformType;
using typename Superclass::TransformPointer;
using typename Superclass::InputPointType;
using typename Superclass::OutputPointType;
using typename Superclass::TransformParametersType;
using typename Superclass::TransformJacobianType;
using typename Superclass::InterpolatorType;
using typename Superclass::InterpolatorPointer;
using typename Superclass::RealType;
using typename Superclass::GradientPixelType;
using typename Superclass::GradientImageType;
using typename Superclass::GradientImagePointer;
using typename Superclass::FixedImageMaskType;
using typename Superclass::FixedImageMaskPointer;
using typename Superclass::MovingImageMaskType;
using typename Superclass::MovingImageMaskPointer;
using typename Superclass::MeasureType;
using typename Superclass::DerivativeType;
using typename Superclass::ParametersType;
using typename Superclass::FixedImagePixelType;
using typename Superclass::MovingImageRegionType;
using typename Superclass::ImageSamplerType;
using typename Superclass::ImageSamplerPointer;
using typename Superclass::ImageSampleContainerType;
using typename Superclass::ImageSampleContainerPointer;
using typename Superclass::FixedImageLimiterType;
using typename Superclass::MovingImageLimiterType;
using typename Superclass::FixedImageLimiterOutputType;
using typename Superclass::MovingImageLimiterOutputType;
using typename Superclass::MovingImageDerivativeScalesType;
/** The fixed image dimension. */
itkStaticConstMacro(FixedImageDimension, unsigned int, FixedImageType::ImageDimension);
/** The moving image dimension. */
itkStaticConstMacro(MovingImageDimension, unsigned int, MovingImageType::ImageDimension);
/** Get the value: the negative normalized mutual information. */
MeasureType
GetValue(const ParametersType & parameters) const override;
/** Get the value and derivatives for single valued optimizers. */
void
GetValueAndDerivative(const ParametersType & parameters,
MeasureType & Value,
DerivativeType & Derivative) const override;
protected:
/** The constructor. */
ParzenWindowNormalizedMutualInformationImageToImageMetric() = default;
/** The destructor. */
~ParzenWindowNormalizedMutualInformationImageToImageMetric() override = default;
/** Print Self. */
void
PrintSelf(std::ostream & os, Indent indent) const override;
/** Protected Typedefs ******************/
/** Typedefs inherited from superclass */
using typename Superclass::FixedImageIndexType;
using typename Superclass::FixedImageIndexValueType;
using typename Superclass::MovingImageIndexType;
using typename Superclass::FixedImagePointType;
using typename Superclass::MovingImagePointType;
using typename Superclass::MovingImageContinuousIndexType;
using typename Superclass::BSplineInterpolatorType;
using typename Superclass::MovingImageDerivativeType;
using typename Superclass::PDFValueType;
using typename Superclass::MarginalPDFType;
using typename Superclass::JointPDFType;
using typename Superclass::JointPDFDerivativesType;
using typename Superclass::IncrementalMarginalPDFType;
using typename Superclass::JointPDFIndexType;
using typename Superclass::JointPDFRegionType;
using typename Superclass::JointPDFSizeType;
using typename Superclass::JointPDFDerivativesIndexType;
using typename Superclass::JointPDFDerivativesRegionType;
using typename Superclass::JointPDFDerivativesSizeType;
using typename Superclass::ParzenValueContainerType;
using typename Superclass::KernelFunctionType;
using typename Superclass::NonZeroJacobianIndicesType;
/** Replace the marginal probabilities by log(probabilities)
* Changes the input pdf since they are not needed anymore! */
virtual void
ComputeLogMarginalPDF(MarginalPDFType & pdf) const;
/** Compute the normalized mutual information and the jointEntropy
* NMI = (Ef + Em) / Ej
* Ef = fixed marginal entropy = - sum_k sum_i p(i,k) log pf(k)
* Em = moving marginal entropy = - sum_k sum_i p(i,k) log pm(i)
* Ej = joint entropy = - sum_k sum_i p(i,k) log p(i,k)
*/
virtual MeasureType
ComputeNormalizedMutualInformation(MeasureType & jointEntropy) const;
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkParzenWindowNormalizedMutualInformationImageToImageMetric.hxx"
#endif
#endif // end #ifndef itkParzenWindowNormalizedMutualInformationImageToImageMetric_h
|