File: itkParzenWindowNormalizedMutualInformationImageToImageMetric.hxx

package info (click to toggle)
elastix 5.2.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 42,480 kB
  • sloc: cpp: 68,403; lisp: 4,118; python: 1,013; xml: 182; sh: 177; makefile: 33
file content (279 lines) | stat: -rw-r--r-- 10,506 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
/*=========================================================================
 *
 *  Copyright UMC Utrecht and contributors
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *        http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#ifndef itkParzenWindowNormalizedMutualInformationImageToImageMetric_hxx
#define itkParzenWindowNormalizedMutualInformationImageToImageMetric_hxx

#include "itkParzenWindowNormalizedMutualInformationImageToImageMetric.h"

#include "itkImageLinearConstIteratorWithIndex.h"
#include <vnl/vnl_math.h>

namespace itk
{

/**
 * ********************* PrintSelf ******************************
 *
 * Print out internal information about this class.
 */

template <class TFixedImage, class TMovingImage>
void
ParzenWindowNormalizedMutualInformationImageToImageMetric<TFixedImage, TMovingImage>::PrintSelf(std::ostream & os,
                                                                                                Indent indent) const
{
  /** Call the superclass' PrintSelf. */
  Superclass::PrintSelf(os, indent);

  /** This function is not complete, but we don't use it anyway. */

} // end PrintSelf()


/**
 * ********************** ComputeLogMarginalPDF***********************
 */

template <class TFixedImage, class TMovingImage>
void
ParzenWindowNormalizedMutualInformationImageToImageMetric<TFixedImage, TMovingImage>::ComputeLogMarginalPDF(
  MarginalPDFType & pdf) const
{
  /** Typedef iterator */
  using MarginalPDFIteratorType = typename MarginalPDFType::iterator;

  /** Prepare iterators for computing marginal logPDF. */
  MarginalPDFIteratorType       PDFit = pdf.begin();
  const MarginalPDFIteratorType PDFend = pdf.end();

  /** do it! */
  while (PDFit != PDFend)
  {
    if ((*PDFit) > 1e-16)
    {
      (*PDFit) = std::log(*PDFit);
    }
    else
    {
      (*PDFit) = 0.0;
    }
    ++PDFit;
  }

} // end ComputeLogMarginalPDF


/**
 * ********************** ComputeNormalizedMutualInformation ***********************
 * Assumes the marginal pdfs are already log'ed
 * Returns the normalized mutual information, so not its negative...
 */

template <class TFixedImage, class TMovingImage>
auto
ParzenWindowNormalizedMutualInformationImageToImageMetric<TFixedImage, TMovingImage>::
  ComputeNormalizedMutualInformation(MeasureType & jointEntropy) const -> MeasureType
{
  /** Typedef iterators */
  using JointPDFConstIteratorType = ImageLinearConstIteratorWithIndex<JointPDFType>;
  using MarginalPDFConstIteratorType = typename MarginalPDFType::const_iterator;

  /** Prepare iterators for computing measure */
  JointPDFConstIteratorType jointPDFconstit(this->m_JointPDF, this->m_JointPDF->GetLargestPossibleRegion());
  jointPDFconstit.SetDirection(0);
  jointPDFconstit.GoToBegin();
  MarginalPDFConstIteratorType       fixedPDFconstit = this->m_FixedImageMarginalPDF.begin();
  MarginalPDFConstIteratorType       movingPDFconstit = this->m_MovingImageMarginalPDF.begin();
  const MarginalPDFConstIteratorType fixedPDFend = this->m_FixedImageMarginalPDF.end();
  const MarginalPDFConstIteratorType movingPDFend = this->m_MovingImageMarginalPDF.end();

  /** Loop over histogram to compute measure */
  double sumnum = 0.0;
  double sumden = 0.0;
  while (fixedPDFconstit != fixedPDFend)
  {
    const double logFixedImagePDFValue = *fixedPDFconstit;
    movingPDFconstit = this->m_MovingImageMarginalPDF.begin();
    while (movingPDFconstit != movingPDFend)
    {
      const double logMovingImagePDFValue = *movingPDFconstit;
      const double jointPDFValue = jointPDFconstit.Get();
      sumnum -= jointPDFValue * (logFixedImagePDFValue + logMovingImagePDFValue);
      /** check for non-zero bin contribution */
      if (jointPDFValue > 1e-16)
      {
        sumden -= jointPDFValue * std::log(jointPDFValue);
      }
      ++movingPDFconstit;
      ++jointPDFconstit;
    } // end while-loop over moving index
    ++fixedPDFconstit;
    jointPDFconstit.NextLine();
  } // end while-loop over fixed index

  jointEntropy = sumden;
  return static_cast<MeasureType>(sumnum / sumden);
} // end ComputeNormalizedMutualInformation


/**
 * ************************** GetValue **************************
 * Get the match Measure.
 */

template <class TFixedImage, class TMovingImage>
auto
ParzenWindowNormalizedMutualInformationImageToImageMetric<TFixedImage, TMovingImage>::GetValue(
  const ParametersType & parameters) const -> MeasureType
{
  /** Construct the JointPDF and Alpha */
  this->ComputePDFs(parameters);

  /** Normalize the pdfs: p = alpha h */
  this->NormalizeJointPDF(this->m_JointPDF, this->m_Alpha);

  /** Compute the fixed and moving marginal pdfs, by summing over the joint pdf */
  this->ComputeMarginalPDF(this->m_JointPDF, this->m_FixedImageMarginalPDF, 0);
  this->ComputeMarginalPDF(this->m_JointPDF, this->m_MovingImageMarginalPDF, 1);

  /** Replace the probabilities by log(probabilities) */
  this->ComputeLogMarginalPDF(this->m_FixedImageMarginalPDF);
  this->ComputeLogMarginalPDF(this->m_MovingImageMarginalPDF);

  /** Compute the measure */
  MeasureType       jointEntropy = 0.0;
  const MeasureType nMI = this->ComputeNormalizedMutualInformation(jointEntropy);

  return static_cast<MeasureType>(-1.0 * nMI);

} // end GetValue


/**
 * ******************** GetValueAndDerivative *******************
 * Get both the Value and the Derivative of the Measure.
 */

template <class TFixedImage, class TMovingImage>
void
ParzenWindowNormalizedMutualInformationImageToImageMetric<TFixedImage, TMovingImage>::GetValueAndDerivative(
  const ParametersType & parameters,
  MeasureType &          value,
  DerivativeType &       derivative) const
{
  /** Initialize some variables */
  value = MeasureType{};
  derivative.set_size(this->GetNumberOfParameters());
  derivative.Fill(0.0);

  /** Construct the JointPDF, JointPDFDerivatives, and Alpha. */
  this->ComputePDFsAndPDFDerivatives(parameters);

  /** Normalize the pdfs: p = alpha h*/
  this->NormalizeJointPDF(this->m_JointPDF, this->m_Alpha);

  /** Compute the fixed and moving marginal pdf by summing over the histogram */
  this->ComputeMarginalPDF(this->m_JointPDF, this->m_FixedImageMarginalPDF, 0);
  this->ComputeMarginalPDF(this->m_JointPDF, this->m_MovingImageMarginalPDF, 1);

  /** Replace the probabilities by log(probabilities) */
  this->ComputeLogMarginalPDF(this->m_FixedImageMarginalPDF);
  this->ComputeLogMarginalPDF(this->m_MovingImageMarginalPDF);

  /** Compute the measure and joint entropy (which we both need to compute the derivative) */
  MeasureType       jointEntropy = 0.0;
  const MeasureType nMI = this->ComputeNormalizedMutualInformation(jointEntropy);
  value = static_cast<MeasureType>(-1.0 * nMI);

  /** Now compute the derivatives:
   * -dNMI/dmu = - 1/Ej [
   *      sum_k sum_i dpdmu(i,k) ( NMI log(p(i,k)) - log(pf(k)) - log(pm(i)) ) ]
   *           = - 1/Ej [ sum_k sum_i dpdmu(i,k) pRatio ]
   * where:
   * dpdmu(i,k) = alpha dhdmu(i,k)
   *
   * m_JointPDFDerivatives reflects dhdmu(i,k) at this point in the code.
   * p = m_JointPDF reflects [alpha h(i,k)]
   *
   * So, we can write, following more or less the source code below:
   * -dNMI/dmu = - sum_k sum_i dhdmu(i,k) alpha*pRatio/Ej
   **/

  /** Typedefs for iterators */
  using JointPDFDerivativesConstIteratorType = ImageLinearConstIteratorWithIndex<JointPDFDerivativesType>;
  using DerivativeIteratorType = typename DerivativeType::iterator;
  using DerivativeConstIteratorType = typename DerivativeType::const_iterator;
  using JointPDFConstIteratorType = ImageLinearConstIteratorWithIndex<JointPDFType>;
  using MarginalPDFConstIteratorType = typename MarginalPDFType::const_iterator;

  /** Setup iterators */
  JointPDFDerivativesConstIteratorType jointPDFDerivativesConstit(
    this->m_JointPDFDerivatives, this->m_JointPDFDerivatives->GetLargestPossibleRegion());
  jointPDFDerivativesConstit.SetDirection(0);
  jointPDFDerivativesConstit.GoToBegin();

  JointPDFConstIteratorType jointPDFconstit(this->m_JointPDF, this->m_JointPDF->GetLargestPossibleRegion());
  jointPDFconstit.SetDirection(0);
  jointPDFconstit.GoToBegin();

  DerivativeIteratorType            derivit = derivative.begin();
  const DerivativeConstIteratorType derivend = derivative.end();

  MarginalPDFConstIteratorType       fixedPDFconstit = this->m_FixedImageMarginalPDF.begin();
  MarginalPDFConstIteratorType       movingPDFconstit = this->m_MovingImageMarginalPDF.begin();
  const MarginalPDFConstIteratorType fixedPDFend = this->m_FixedImageMarginalPDF.end();
  const MarginalPDFConstIteratorType movingPDFend = this->m_MovingImageMarginalPDF.end();

  /** Compute the derivatives */
  while (fixedPDFconstit != fixedPDFend)
  {
    const double logFixedImagePDFValue = *fixedPDFconstit;
    movingPDFconstit = this->m_MovingImageMarginalPDF.begin();
    while (movingPDFconstit != movingPDFend)
    {
      const double logMovingImagePDFValue = *movingPDFconstit;
      const double jointPDFValue = jointPDFconstit.Get();
      if (jointPDFValue > 1e-16)
      {
        const double pRatio =
          (nMI * std::log(jointPDFValue) - logFixedImagePDFValue - logMovingImagePDFValue) / jointEntropy;
        const double pRatioAlpha = this->m_Alpha * pRatio;
        /** check for non-zero bin contribution */
        derivit = derivative.begin();
        while (derivit != derivend)
        {
          (*derivit) -= jointPDFDerivativesConstit.Get() * pRatioAlpha;
          ++derivit;
          ++jointPDFDerivativesConstit;
        } // end while-loop over parameters
      }   // end if-block to check non-zero bin contribution
      ++movingPDFconstit;
      ++jointPDFconstit;
      jointPDFDerivativesConstit.NextLine();
    } // end while-loop over moving index
    ++fixedPDFconstit;
    jointPDFconstit.NextLine();
  } // end while-loop over fixed index

} // end GetValueAndDerivative


} // end namespace itk

#endif // end #ifndef itkParzenWindowNormalizedMutualInformationImageToImageMetric_hxx