1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
|
/*=========================================================================
*
* Copyright UMC Utrecht and contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkPCAMetric_hxx
#define itkPCAMetric_hxx
#include "itkPCAMetric.h"
#include "itkMersenneTwisterRandomVariateGenerator.h"
#include <vnl/algo/vnl_matrix_update.h>
#include "itkImage.h"
#include <vnl/algo/vnl_svd.h>
#include <vnl/vnl_trace.h>
#include <vnl/algo/vnl_symmetric_eigensystem.h>
#include <cassert>
#include <numeric>
#include <fstream>
namespace itk
{
/**
* ******************* Constructor *******************
*/
template <class TFixedImage, class TMovingImage>
PCAMetric<TFixedImage, TMovingImage>::PCAMetric()
{
this->SetUseImageSampler(true);
this->SetUseFixedImageLimiter(false);
this->SetUseMovingImageLimiter(false);
/** Initialize the m_ParzenWindowHistogramThreaderParameters. */
this->m_PCAMetricThreaderParameters.m_Metric = this;
} // end constructor
/**
* ******************* Initialize *******************
*/
template <class TFixedImage, class TMovingImage>
void
PCAMetric<TFixedImage, TMovingImage>::Initialize()
{
/** Initialize transform, interpolator, etc. */
Superclass::Initialize();
/** Retrieve slowest varying dimension and its size. */
m_LastDimIndex = FixedImageDimension - 1;
m_G = this->GetFixedImage()->GetLargestPossibleRegion().GetSize(m_LastDimIndex);
if (m_NumEigenValues > m_G)
{
std::cerr << "ERROR: Number of eigenvalues is larger than number of images. Maximum number of eigenvalues equals: "
<< m_G << std::endl;
}
} // end Initializes
/**
* ******************* PrintSelf *******************
*/
template <class TFixedImage, class TMovingImage>
void
PCAMetric<TFixedImage, TMovingImage>::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
} // end PrintSelf
/**
* ********************* InitializeThreadingParameters ****************************
*/
template <class TFixedImage, class TMovingImage>
void
PCAMetric<TFixedImage, TMovingImage>::InitializeThreadingParameters() const
{
const ThreadIdType numberOfThreads = Self::GetNumberOfWorkUnits();
/** Resize and initialize the threading related parameters.
* The SetSize() functions do not resize the data when this is not
* needed, which saves valuable re-allocation time.
* Filling the potentially large vectors is performed later, in each thread,
* which has performance benefits for larger vector sizes.
*/
/** Only resize the array of structs when needed. */
m_PCAMetricGetSamplesPerThreadVariables.resize(numberOfThreads);
/** Some initialization. */
for (auto & perThreadVariable : m_PCAMetricGetSamplesPerThreadVariables)
{
perThreadVariable.st_NumberOfPixelsCounted = SizeValueType{};
perThreadVariable.st_Derivative.SetSize(this->GetNumberOfParameters());
}
m_PixelStartIndex.resize(numberOfThreads);
} // end InitializeThreadingParameters()
/**
* *************** EvaluateTransformJacobianInnerProduct ****************
*/
template <class TFixedImage, class TMovingImage>
void
PCAMetric<TFixedImage, TMovingImage>::EvaluateTransformJacobianInnerProduct(
const TransformJacobianType & jacobian,
const MovingImageDerivativeType & movingImageDerivative,
DerivativeType & imageJacobian) const
{
ImplementationDetails::EvaluateInnerProduct(jacobian, movingImageDerivative, imageJacobian);
}
/**
* ******************* GetValue *******************
*/
template <class TFixedImage, class TMovingImage>
auto
PCAMetric<TFixedImage, TMovingImage>::GetValue(const TransformParametersType & parameters) const -> MeasureType
{
itkDebugMacro("GetValue( " << parameters << " ) ");
/** Call non-thread-safe stuff, such as:
* this->SetTransformParameters( parameters );
* this->GetImageSampler()->Update();
* Because of these calls GetValueAndDerivative itself is not thread-safe,
* so cannot be called multiple times simultaneously.
* This is however needed in the CombinationImageToImageMetric.
* In that case, you need to:
* - switch the use of this function to on, using m_UseMetricSingleThreaded = true
* - call BeforeThreadedGetValueAndDerivative once (single-threaded) before
* calling GetValueAndDerivative
* - switch the use of this function to off, using m_UseMetricSingleThreaded = false
* - Now you can call GetValueAndDerivative multi-threaded.
*/
this->BeforeThreadedGetValueAndDerivative(parameters);
/** Initialize some variables */
Superclass::m_NumberOfPixelsCounted = 0;
MeasureType measure{};
/** Update the imageSampler and get a handle to the sample container. */
ImageSampleContainerPointer sampleContainer = this->GetImageSampler()->GetOutput();
/** The rows of the ImageSampleMatrix contain the samples of the images of the stack */
const unsigned int numberOfSamples = sampleContainer->Size();
MatrixType datablock(numberOfSamples, m_G, vnl_matrix_null);
/** Initialize dummy loop variable */
unsigned int pixelIndex = 0;
for (const auto & fixedImageSample : *sampleContainer)
{
/** Read fixed coordinates. */
FixedImagePointType fixedPoint = fixedImageSample.m_ImageCoordinates;
/** Transform sampled point to voxel coordinates. */
auto voxelCoord =
this->GetFixedImage()->template TransformPhysicalPointToContinuousIndex<CoordinateRepresentationType>(fixedPoint);
unsigned int numSamplesOk = 0;
/** Loop over t */
for (unsigned int d = 0; d < m_G; ++d)
{
/** Initialize some variables. */
RealType movingImageValue;
/** Set fixed point's last dimension to lastDimPosition. */
voxelCoord[m_LastDimIndex] = d;
/** Transform sampled point back to world coordinates. */
this->GetFixedImage()->TransformContinuousIndexToPhysicalPoint(voxelCoord, fixedPoint);
/** Transform point. */
const MovingImagePointType mappedPoint = this->TransformPoint(fixedPoint);
/** Check if the point is inside the moving mask. */
bool sampleOk = this->IsInsideMovingMask(mappedPoint);
if (sampleOk)
{
sampleOk = this->Superclass::EvaluateMovingImageValueAndDerivative(mappedPoint, movingImageValue, nullptr);
}
if (sampleOk)
{
++numSamplesOk;
datablock(pixelIndex, d) = movingImageValue;
}
} /** end loop over t */
if (numSamplesOk == m_G)
{
++pixelIndex;
Superclass::m_NumberOfPixelsCounted++;
}
} /** end first loop over image sample container */
/** Check if enough samples were valid. */
this->CheckNumberOfSamples(numberOfSamples, Superclass::m_NumberOfPixelsCounted);
MatrixType A(datablock.extract(Superclass::m_NumberOfPixelsCounted, m_G));
MatrixType Amm(Superclass::m_NumberOfPixelsCounted, m_G, vnl_matrix_null);
{
/** Calculate mean of from columns */
vnl_vector<RealType> mean(m_G, RealType{});
for (unsigned int i = 0; i < Superclass::m_NumberOfPixelsCounted; ++i)
{
for (unsigned int j = 0; j < m_G; ++j)
{
mean(j) += A(i, j);
}
}
mean /= RealType(Superclass::m_NumberOfPixelsCounted);
for (unsigned int i = 0; i < Superclass::m_NumberOfPixelsCounted; ++i)
{
for (unsigned int j = 0; j < m_G; ++j)
{
Amm(i, j) = A(i, j) - mean(j);
}
}
}
/** Compute covariance matrix C */
MatrixType C(Amm.transpose() * Amm);
C /= static_cast<RealType>(RealType(Superclass::m_NumberOfPixelsCounted) - 1.0);
vnl_diag_matrix<RealType> S(m_G, RealType{});
for (unsigned int j = 0; j < m_G; ++j)
{
S(j, j) = 1.0 / sqrt(C(j, j));
}
/** Compute correlation matrix K */
MatrixType K(S * C * S);
/** Compute first eigenvalue and eigenvector of K */
vnl_symmetric_eigensystem<RealType> eig(K);
RealType sumEigenValuesUsed{};
for (unsigned int i = 1; i < m_NumEigenValues + 1; ++i)
{
sumEigenValuesUsed += eig.get_eigenvalue(m_G - i);
}
measure = m_G - sumEigenValuesUsed;
/** Return the measure value. */
return measure;
} // end GetValue()
/**
* ******************* GetDerivative *******************
*/
template <class TFixedImage, class TMovingImage>
void
PCAMetric<TFixedImage, TMovingImage>::GetDerivative(const TransformParametersType & parameters,
DerivativeType & derivative) const
{
/** When the derivative is calculated, all information for calculating
* the metric value is available. It does not cost anything to calculate
* the metric value now. Therefore, we have chosen to only implement the
* GetValueAndDerivative(), supplying it with a dummy value variable. */
MeasureType dummyvalue{};
this->GetValueAndDerivative(parameters, dummyvalue, derivative);
} // end GetDerivative()
/**
* ******************* GetValueAndDerivativeSingleThreaded *******************
*/
template <class TFixedImage, class TMovingImage>
void
PCAMetric<TFixedImage, TMovingImage>::GetValueAndDerivativeSingleThreaded(const TransformParametersType & parameters,
MeasureType & value,
DerivativeType & derivative) const
{
itkDebugMacro("GetValueAndDerivative( " << parameters << " ) ");
/** Initialize some variables */
Superclass::m_NumberOfPixelsCounted = 0;
MeasureType measure{};
derivative.set_size(this->GetNumberOfParameters());
derivative.Fill(DerivativeValueType{});
/** Call non-thread-safe stuff, such as:
* this->SetTransformParameters( parameters );
* this->GetImageSampler()->Update();
* Because of these calls GetValueAndDerivative itself is not thread-safe,
* so cannot be called multiple times simultaneously.
* This is however needed in the CombinationImageToImageMetric.
* In that case, you need to:
* - switch the use of this function to on, using m_UseMetricSingleThreaded = true
* - call BeforeThreadedGetValueAndDerivative once (single-threaded) before
* calling GetValueAndDerivative
* - switch the use of this function to off, using m_UseMetricSingleThreaded = false
* - Now you can call GetValueAndDerivative multi-threaded.
*/
this->BeforeThreadedGetValueAndDerivative(parameters);
ImageSampleContainerPointer sampleContainer = this->GetImageSampler()->GetOutput();
std::vector<FixedImagePointType> SamplesOK;
/** The rows of the ImageSampleMatrix contain the samples of the images of the stack */
const unsigned int numberOfSamples = sampleContainer->Size();
MatrixType datablock(numberOfSamples, m_G, vnl_matrix_null);
/** Initialize dummy loop variables */
unsigned int pixelIndex = 0;
for (const auto & fixedImageSample : *sampleContainer)
{
/** Read fixed coordinates. */
FixedImagePointType fixedPoint = fixedImageSample.m_ImageCoordinates;
/** Transform sampled point to voxel coordinates. */
auto voxelCoord =
this->GetFixedImage()->template TransformPhysicalPointToContinuousIndex<CoordinateRepresentationType>(fixedPoint);
unsigned int numSamplesOk = 0;
/** Loop over t */
for (unsigned int d = 0; d < m_G; ++d)
{
/** Initialize some variables. */
RealType movingImageValue;
/** Set fixed point's last dimension to lastDimPosition. */
voxelCoord[m_LastDimIndex] = d;
/** Transform sampled point back to world coordinates. */
this->GetFixedImage()->TransformContinuousIndexToPhysicalPoint(voxelCoord, fixedPoint);
/** Transform point. */
const MovingImagePointType mappedPoint = this->TransformPoint(fixedPoint);
/** Check if the point is inside the moving mask. */
bool sampleOk = this->IsInsideMovingMask(mappedPoint);
if (sampleOk)
{
sampleOk = this->Superclass::EvaluateMovingImageValueAndDerivative(mappedPoint, movingImageValue, nullptr);
}
if (sampleOk)
{
++numSamplesOk;
datablock(pixelIndex, d) = movingImageValue;
} // end if sampleOk
} // end loop over t
if (numSamplesOk == m_G)
{
SamplesOK.push_back(fixedPoint);
++pixelIndex;
Superclass::m_NumberOfPixelsCounted++;
}
} /** end first loop over image sample container */
/** Check if enough samples were valid. */
this->CheckNumberOfSamples(sampleContainer->Size(), Superclass::m_NumberOfPixelsCounted);
MatrixType A(datablock.extract(Superclass::m_NumberOfPixelsCounted, m_G));
/** Calculate standard deviation from columns */
MatrixType Amm(Superclass::m_NumberOfPixelsCounted, m_G, vnl_matrix_null);
{
/** Calculate mean of from columns */
vnl_vector<RealType> mean(m_G, RealType{});
for (unsigned int i = 0; i < Superclass::m_NumberOfPixelsCounted; ++i)
{
for (unsigned int j = 0; j < m_G; ++j)
{
mean(j) += A(i, j);
}
}
mean /= RealType(Superclass::m_NumberOfPixelsCounted);
for (unsigned int i = 0; i < Superclass::m_NumberOfPixelsCounted; ++i)
{
for (unsigned int j = 0; j < m_G; ++j)
{
Amm(i, j) = A(i, j) - mean(j);
}
}
}
/** Compute covariance matrix C */
MatrixType Atmm = Amm.transpose();
MatrixType C(Atmm * Amm);
C /= static_cast<RealType>(RealType(Superclass::m_NumberOfPixelsCounted) - 1.0);
vnl_diag_matrix<RealType> S(m_G, RealType{});
for (unsigned int j = 0; j < m_G; ++j)
{
S(j, j) = 1.0 / sqrt(C(j, j));
}
MatrixType K(S * C * S);
/** Compute first eigenvalue and eigenvector of K */
vnl_symmetric_eigensystem<RealType> eig(K);
RealType sumEigenValuesUsed{};
for (unsigned int i = 1; i < m_NumEigenValues + 1; ++i)
{
sumEigenValuesUsed += eig.get_eigenvalue(m_G - i);
}
MatrixType eigenVectorMatrix(m_G, m_NumEigenValues);
for (unsigned int i = 1; i < m_NumEigenValues + 1; ++i)
{
eigenVectorMatrix.set_column(i - 1, (eig.get_eigenvector(m_G - i)).normalize());
}
MatrixType eigenVectorMatrixTranspose(eigenVectorMatrix.transpose());
/** Create variables to store intermediate results in. */
TransformJacobianType jacobian;
DerivativeType dMTdmu;
DerivativeType imageJacobian(Superclass::m_AdvancedTransform->GetNumberOfNonZeroJacobianIndices());
std::vector<NonZeroJacobianIndicesType> nzjis(m_G, NonZeroJacobianIndicesType());
/** Sub components of metric derivative */
vnl_diag_matrix<DerivativeValueType> dSdmu_part1(m_G, DerivativeValueType{});
for (unsigned int d = 0; d < m_G; ++d)
{
double S_sqr = S(d, d) * S(d, d);
double S_qub = S_sqr * S(d, d);
dSdmu_part1(d, d) = -S_qub;
}
DerivativeMatrixType vSAtmm(eigenVectorMatrixTranspose * S * Atmm);
DerivativeMatrixType CSv(C * S * eigenVectorMatrix);
DerivativeMatrixType Sv(S * eigenVectorMatrix);
DerivativeMatrixType vdSdmu_part1(eigenVectorMatrixTranspose * dSdmu_part1);
/** Second loop over fixed image samples. */
for (pixelIndex = 0; pixelIndex < SamplesOK.size(); ++pixelIndex)
{
/** Read fixed coordinates. */
FixedImagePointType fixedPoint = SamplesOK[pixelIndex];
/** Transform sampled point to voxel coordinates. */
auto voxelCoord =
this->GetFixedImage()->template TransformPhysicalPointToContinuousIndex<CoordinateRepresentationType>(fixedPoint);
for (unsigned int d = 0; d < m_G; ++d)
{
/** Initialize some variables. */
RealType movingImageValue;
MovingImageDerivativeType movingImageDerivative;
/** Set fixed point's last dimension to lastDimPosition. */
voxelCoord[m_LastDimIndex] = d;
/** Transform sampled point back to world coordinates. */
this->GetFixedImage()->TransformContinuousIndexToPhysicalPoint(voxelCoord, fixedPoint);
const MovingImagePointType mappedPoint = this->TransformPoint(fixedPoint);
this->Superclass::EvaluateMovingImageValueAndDerivative(mappedPoint, movingImageValue, &movingImageDerivative);
/** Get the TransformJacobian dT/dmu */
this->EvaluateTransformJacobian(fixedPoint, jacobian, nzjis[d]);
/** Compute the innerproduct (dM/dx)^T (dT/dmu). */
this->EvaluateTransformJacobianInnerProduct(jacobian, movingImageDerivative, imageJacobian);
/** Store values. */
dMTdmu = imageJacobian;
/** build metric derivative components */
for (unsigned int p = 0; p < nzjis[d].size(); ++p)
{
for (unsigned int z = 0; z < m_NumEigenValues; ++z)
{
derivative[nzjis[d][p]] += vSAtmm[z][pixelIndex] * dMTdmu[p] * Sv[d][z] +
vdSdmu_part1[z][d] * Atmm[d][pixelIndex] * dMTdmu[p] * CSv[d][z];
} // end loop over eigenvalues
} // end loop over non-zero jacobian indices
} // end loop over last dimension
} // end second for loop over sample container
derivative *= -(2.0 / (DerivativeValueType(Superclass::m_NumberOfPixelsCounted) - 1.0)); // normalize
measure = m_G - sumEigenValuesUsed;
/** Subtract mean from derivative elements. */
if (m_UseZeroAverageDisplacementConstraint)
{
if (!m_TransformIsStackTransform)
{
/** Update derivative per dimension.
* Parameters are ordered xxxxxxx yyyyyyy zzzzzzz ttttttt and
* per dimension xyz.
*/
const unsigned int lastDimGridSize = m_GridSize[m_LastDimIndex];
const unsigned int numParametersPerDimension = this->GetNumberOfParameters() / MovingImageDimension;
const unsigned int numControlPointsPerDimension = numParametersPerDimension / lastDimGridSize;
DerivativeType mean(numControlPointsPerDimension);
for (unsigned int d = 0; d < MovingImageDimension; ++d)
{
/** Compute mean per dimension. */
mean.Fill(0.0);
const unsigned int starti = numParametersPerDimension * d;
for (unsigned int i = starti; i < starti + numParametersPerDimension; ++i)
{
mean[i % numControlPointsPerDimension] += derivative[i];
}
mean /= static_cast<RealType>(lastDimGridSize);
/** Update derivative for every control point per dimension. */
for (unsigned int i = starti; i < starti + numParametersPerDimension; ++i)
{
derivative[i] -= mean[i % numControlPointsPerDimension];
}
}
}
else
{
/** Update derivative per dimension.
* Parameters are ordered x0x0x0y0y0y0z0z0z0x1x1x1y1y1y1z1z1z1 with
* the number the time point index.
*/
const unsigned int numParametersPerLastDimension = this->GetNumberOfParameters() / m_G;
DerivativeType mean(numParametersPerLastDimension, 0.0);
/** Compute mean per control point. */
for (unsigned int t = 0; t < m_G; ++t)
{
const unsigned int startc = numParametersPerLastDimension * t;
for (unsigned int c = startc; c < startc + numParametersPerLastDimension; ++c)
{
mean[c % numParametersPerLastDimension] += derivative[c];
}
}
mean /= static_cast<RealType>(m_G);
/** Update derivative per control point. */
for (unsigned int t = 0; t < m_G; ++t)
{
const unsigned int startc = numParametersPerLastDimension * t;
for (unsigned int c = startc; c < startc + numParametersPerLastDimension; ++c)
{
derivative[c] -= mean[c % numParametersPerLastDimension];
}
}
}
}
/** Return the measure value. */
value = measure;
} // end GetValueAndDerivativeSingleThreaded()
/**
* ******************* GetValueAndDerivative *******************
*/
template <class TFixedImage, class TMovingImage>
void
PCAMetric<TFixedImage, TMovingImage>::GetValueAndDerivative(const TransformParametersType & parameters,
MeasureType & value,
DerivativeType & derivative) const
{
/** Option for now to still use the single threaded code. */
if (!Superclass::m_UseMultiThread)
{
return this->GetValueAndDerivativeSingleThreaded(parameters, value, derivative);
}
/** Call non-thread-safe stuff, such as:
* this->SetTransformParameters( parameters );
* this->GetImageSampler()->Update();
* Because of these calls GetValueAndDerivative itself is not thread-safe,
* so cannot be called multiple times simultaneously.
* This is however needed in the CombinationImageToImageMetric.
* In that case, you need to:
* - switch the use of this function to on, using m_UseMetricSingleThreaded = true
* - call BeforeThreadedGetValueAndDerivative once (single-threaded) before
* calling GetValueAndDerivative
* - switch the use of this function to off, using m_UseMetricSingleThreaded = false
* - Now you can call GetValueAndDerivative multi-threaded.
*/
this->BeforeThreadedGetValueAndDerivative(parameters);
this->InitializeThreadingParameters();
/** Launch multi-threading GetSamples */
this->LaunchGetSamplesThreaderCallback();
/** Get the metric value contributions from all threads. */
this->AfterThreadedGetSamples(value);
/** Launch multi-threading ComputeDerivative */
this->LaunchComputeDerivativeThreaderCallback();
/** Sum derivative contributions from all threads */
this->AfterThreadedComputeDerivative(derivative);
} // end GetValueAndDerivative()
/**
* ******************* ThreadedGetSamples *******************
*/
template <class TFixedImage, class TMovingImage>
void
PCAMetric<TFixedImage, TMovingImage>::ThreadedGetSamples(ThreadIdType threadId)
{
/** Get a handle to the sample container. */
ImageSampleContainerPointer sampleContainer = this->GetImageSampler()->GetOutput();
const unsigned long sampleContainerSize = sampleContainer->Size();
/** Get the samples for this thread. */
const unsigned long nrOfSamplesPerThreads = static_cast<unsigned long>(
std::ceil(static_cast<double>(sampleContainerSize) / static_cast<double>(Self::GetNumberOfWorkUnits())));
const auto pos_begin = std::min<size_t>(nrOfSamplesPerThreads * threadId, sampleContainerSize);
const auto pos_end = std::min<size_t>(nrOfSamplesPerThreads * (threadId + 1), sampleContainerSize);
/** Create iterator over the sample container. */
const auto beginOfSampleContainer = sampleContainer->cbegin();
const auto threader_fbegin = beginOfSampleContainer + pos_begin;
const auto threader_fend = beginOfSampleContainer + pos_end;
std::vector<FixedImagePointType> SamplesOK;
MatrixType datablock(nrOfSamplesPerThreads, m_G);
unsigned int pixelIndex = 0;
for (auto threader_fiter = threader_fbegin; threader_fiter != threader_fend; ++threader_fiter)
{
/** Read fixed coordinates. */
FixedImagePointType fixedPoint = threader_fiter->m_ImageCoordinates;
/** Transform sampled point to voxel coordinates. */
auto voxelCoord =
this->GetFixedImage()->template TransformPhysicalPointToContinuousIndex<CoordinateRepresentationType>(fixedPoint);
unsigned int numSamplesOk = 0;
/** Loop over t */
for (unsigned int d = 0; d < m_G; ++d)
{
/** Initialize some variables. */
RealType movingImageValue;
/** Set fixed point's last dimension to lastDimPosition. */
voxelCoord[m_LastDimIndex] = d;
/** Transform sampled point back to world coordinates. */
this->GetFixedImage()->TransformContinuousIndexToPhysicalPoint(voxelCoord, fixedPoint);
/** Transform point. */
const MovingImagePointType mappedPoint = this->TransformPoint(fixedPoint);
/** Check if the point is inside the moving mask. */
bool sampleOk = this->IsInsideMovingMask(mappedPoint);
if (sampleOk)
{
sampleOk = this->FastEvaluateMovingImageValueAndDerivative(mappedPoint, movingImageValue, nullptr, threadId);
}
if (sampleOk)
{
++numSamplesOk;
datablock(pixelIndex, d) = movingImageValue;
} // end if sampleOk
} // end loop over t
if (numSamplesOk == m_G)
{
SamplesOK.push_back(fixedPoint);
++pixelIndex;
}
} /** end first loop over image sample container */
/** Only update these variables at the end to prevent unnecessary "false sharing". */
m_PCAMetricGetSamplesPerThreadVariables[threadId].st_NumberOfPixelsCounted = pixelIndex;
m_PCAMetricGetSamplesPerThreadVariables[threadId].st_DataBlock = datablock.extract(pixelIndex, m_G);
m_PCAMetricGetSamplesPerThreadVariables[threadId].st_ApprovedSamples = SamplesOK;
} // end ThreadedGetSamples()
/**
* ******************* AfterThreadedGetSamples *******************
*/
template <class TFixedImage, class TMovingImage>
void
PCAMetric<TFixedImage, TMovingImage>::AfterThreadedGetSamples(MeasureType & value) const
{
const ThreadIdType numberOfThreads = Self::GetNumberOfWorkUnits();
/** Accumulate the number of pixels. */
Superclass::m_NumberOfPixelsCounted = m_PCAMetricGetSamplesPerThreadVariables[0].st_NumberOfPixelsCounted;
for (ThreadIdType i = 1; i < numberOfThreads; ++i)
{
Superclass::m_NumberOfPixelsCounted += m_PCAMetricGetSamplesPerThreadVariables[i].st_NumberOfPixelsCounted;
}
/** Check if enough samples were valid. */
ImageSampleContainerPointer sampleContainer = this->GetImageSampler()->GetOutput();
this->CheckNumberOfSamples(sampleContainer->Size(), Superclass::m_NumberOfPixelsCounted);
MatrixType A(Superclass::m_NumberOfPixelsCounted, m_G);
unsigned int row_start = 0;
for (ThreadIdType i = 0; i < numberOfThreads; ++i)
{
A.update(m_PCAMetricGetSamplesPerThreadVariables[i].st_DataBlock, row_start, 0);
m_PixelStartIndex[i] = row_start;
row_start += m_PCAMetricGetSamplesPerThreadVariables[i].st_DataBlock.rows();
}
/** Calculate standard deviation from columns */
MatrixType Amm(Superclass::m_NumberOfPixelsCounted, m_G, vnl_matrix_null);
{
/** Calculate mean of from columns */
vnl_vector<RealType> mean(m_G, RealType{});
for (unsigned int i = 0; i < Superclass::m_NumberOfPixelsCounted; ++i)
{
for (unsigned int j = 0; j < m_G; ++j)
{
mean(j) += A(i, j);
}
}
mean /= RealType(Superclass::m_NumberOfPixelsCounted);
for (unsigned int i = 0; i < Superclass::m_NumberOfPixelsCounted; ++i)
{
for (unsigned int j = 0; j < m_G; ++j)
{
Amm(i, j) = A(i, j) - mean(j);
}
}
}
/** Compute covariancematrix C */
m_Atmm = Amm.transpose();
MatrixType C(m_Atmm * Amm);
C /= static_cast<RealType>(RealType(Superclass::m_NumberOfPixelsCounted) - 1.0);
vnl_diag_matrix<RealType> S(m_G, RealType{});
for (unsigned int j = 0; j < m_G; ++j)
{
S(j, j) = 1.0 / sqrt(C(j, j));
}
MatrixType K(S * C * S);
/** Compute first eigenvalue and eigenvector of K */
vnl_symmetric_eigensystem<RealType> eig(K);
RealType sumEigenValuesUsed{};
MatrixType eigenVectorMatrix(m_G, m_NumEigenValues);
for (unsigned int i = 1; i < m_NumEigenValues + 1; ++i)
{
sumEigenValuesUsed += eig.get_eigenvalue(m_G - i);
eigenVectorMatrix.set_column(i - 1, (eig.get_eigenvector(m_G - i)).normalize());
}
value = m_G - sumEigenValuesUsed;
MatrixType eigenVectorMatrixTranspose(eigenVectorMatrix.transpose());
/** Sub components of metric derivative */
vnl_diag_matrix<DerivativeValueType> dSdmu_part1(m_G);
for (unsigned int d = 0; d < m_G; ++d)
{
double S_sqr = S(d, d) * S(d, d);
double S_qub = S_sqr * S(d, d);
dSdmu_part1(d, d) = -S_qub;
}
m_vSAtmm = eigenVectorMatrixTranspose * S * m_Atmm;
m_CSv = C * S * eigenVectorMatrix;
m_Sv = S * eigenVectorMatrix;
m_vdSdmu_part1 = eigenVectorMatrixTranspose * dSdmu_part1;
} // end AfterThreadedGetSamples()
/**
* **************** GetSamplesThreaderCallback *******
*/
template <class TFixedImage, class TMovingImage>
ITK_THREAD_RETURN_TYPE
PCAMetric<TFixedImage, TMovingImage>::GetSamplesThreaderCallback(void * arg)
{
assert(arg);
const auto & infoStruct = *static_cast<ThreadInfoType *>(arg);
ThreadIdType threadId = infoStruct.WorkUnitID;
assert(infoStruct.UserData);
const auto & userData = *static_cast<PCAMetricMultiThreaderParameterType *>(infoStruct.UserData);
userData.m_Metric->ThreadedGetSamples(threadId);
return ITK_THREAD_RETURN_DEFAULT_VALUE;
} // GetSamplesThreaderCallback()
/**
* *********************** LaunchGetSamplesThreaderCallback***************
*/
template <class TFixedImage, class TMovingImage>
void
PCAMetric<TFixedImage, TMovingImage>::LaunchGetSamplesThreaderCallback() const
{
/** Setup local threader. */
// \todo: is a global threader better performance-wise? check
auto local_threader = MultiThreaderBase::New();
local_threader->SetNumberOfWorkUnits(Self::GetNumberOfWorkUnits());
local_threader->SetSingleMethodAndExecute(
this->GetSamplesThreaderCallback,
const_cast<void *>(static_cast<const void *>(&this->m_PCAMetricThreaderParameters)));
} // end LaunchGetSamplesThreaderCallback()
/**
* ******************* ThreadedComputeDerivative *******************
*/
template <class TFixedImage, class TMovingImage>
void
PCAMetric<TFixedImage, TMovingImage>::ThreadedComputeDerivative(ThreadIdType threadId)
{
/** Create variables to store intermediate results in. */
DerivativeType & derivative = m_PCAMetricGetSamplesPerThreadVariables[threadId].st_Derivative;
derivative.Fill(0.0);
/** Initialize some variables. */
RealType movingImageValue;
MovingImageDerivativeType movingImageDerivative;
TransformJacobianType jacobian;
DerivativeType imageJacobian(Superclass::m_AdvancedTransform->GetNumberOfNonZeroJacobianIndices());
NonZeroJacobianIndicesType nzjis(Superclass::m_AdvancedTransform->GetNumberOfNonZeroJacobianIndices());
unsigned int dummyindex = 0;
/** Second loop over fixed image samples. */
for (unsigned int pixelIndex = m_PixelStartIndex[threadId];
pixelIndex <
(m_PixelStartIndex[threadId] + m_PCAMetricGetSamplesPerThreadVariables[threadId].st_ApprovedSamples.size());
++pixelIndex)
{
/** Read fixed coordinates. */
FixedImagePointType fixedPoint = m_PCAMetricGetSamplesPerThreadVariables[threadId].st_ApprovedSamples[dummyindex];
/** Transform sampled point to voxel coordinates. */
auto voxelCoord =
this->GetFixedImage()->template TransformPhysicalPointToContinuousIndex<CoordinateRepresentationType>(fixedPoint);
for (unsigned int d = 0; d < m_G; ++d)
{
/** Set fixed point's last dimension to lastDimPosition. */
voxelCoord[m_LastDimIndex] = d;
/** Transform sampled point back to world coordinates. */
this->GetFixedImage()->TransformContinuousIndexToPhysicalPoint(voxelCoord, fixedPoint);
const MovingImagePointType mappedPoint = this->TransformPoint(fixedPoint);
this->FastEvaluateMovingImageValueAndDerivative(mappedPoint, movingImageValue, &movingImageDerivative, threadId);
/** Get the TransformJacobian dT/dmu */
this->EvaluateTransformJacobian(fixedPoint, jacobian, nzjis);
/** Compute the innerproduct (dM/dx)^T (dT/dmu). */
this->EvaluateTransformJacobianInnerProduct(jacobian, movingImageDerivative, imageJacobian);
/** build metric derivative components */
for (unsigned int p = 0; p < nzjis.size(); ++p)
{
DerivativeValueType sum = 0.0;
for (unsigned int z = 0; z < m_NumEigenValues; ++z)
{
sum += m_vSAtmm[z][pixelIndex] * imageJacobian[p] * m_Sv[d][z] +
m_vdSdmu_part1[z][d] * m_Atmm[d][pixelIndex] * imageJacobian[p] * m_CSv[d][z];
} // end loop over eigenvalues
derivative[nzjis[p]] += sum;
} // end loop over non-zero jacobian indices
} // end loop over last dimension
++dummyindex;
} // end second for loop over sample container
} // end ThreadedGetValueAndDerivative()
/**
* ******************* AfterThreadedComputeDerivative *******************
*/
template <class TFixedImage, class TMovingImage>
void
PCAMetric<TFixedImage, TMovingImage>::AfterThreadedComputeDerivative(DerivativeType & derivative) const
{
const ThreadIdType numberOfThreads = Self::GetNumberOfWorkUnits();
derivative = m_PCAMetricGetSamplesPerThreadVariables[0].st_Derivative;
for (ThreadIdType i = 1; i < numberOfThreads; ++i)
{
derivative += m_PCAMetricGetSamplesPerThreadVariables[i].st_Derivative;
}
derivative *= -(2.0 / (DerivativeValueType(Superclass::m_NumberOfPixelsCounted) - 1.0)); // normalize
/** Subtract mean from derivative elements. */
if (m_UseZeroAverageDisplacementConstraint)
{
if (!m_TransformIsStackTransform)
{
/** Update derivative per dimension.
* Parameters are ordered xxxxxxx yyyyyyy zzzzzzz ttttttt and
* per dimension xyz.
*/
const unsigned int lastDimGridSize = m_GridSize[m_LastDimIndex];
const unsigned int numParametersPerDimension = this->GetNumberOfParameters() / MovingImageDimension;
const unsigned int numControlPointsPerDimension = numParametersPerDimension / lastDimGridSize;
DerivativeType mean(numControlPointsPerDimension);
for (unsigned int d = 0; d < MovingImageDimension; ++d)
{
/** Compute mean per dimension. */
mean.Fill(0.0);
const unsigned int starti = numParametersPerDimension * d;
for (unsigned int i = starti; i < starti + numParametersPerDimension; ++i)
{
mean[i % numControlPointsPerDimension] += derivative[i];
}
mean /= static_cast<RealType>(lastDimGridSize);
/** Update derivative for every control point per dimension. */
for (unsigned int i = starti; i < starti + numParametersPerDimension; ++i)
{
derivative[i] -= mean[i % numControlPointsPerDimension];
}
}
}
else
{
/** Update derivative per dimension.
* Parameters are ordered x0x0x0y0y0y0z0z0z0x1x1x1y1y1y1z1z1z1 with
* the number the time point index.
*/
const unsigned int numParametersPerLastDimension = this->GetNumberOfParameters() / m_G;
DerivativeType mean(numParametersPerLastDimension, 0.0);
/** Compute mean per control point. */
for (unsigned int t = 0; t < m_G; ++t)
{
const unsigned int startc = numParametersPerLastDimension * t;
for (unsigned int c = startc; c < startc + numParametersPerLastDimension; ++c)
{
mean[c % numParametersPerLastDimension] += derivative[c];
}
}
mean /= static_cast<RealType>(m_G);
/** Update derivative per control point. */
for (unsigned int t = 0; t < m_G; ++t)
{
const unsigned int startc = numParametersPerLastDimension * t;
for (unsigned int c = startc; c < startc + numParametersPerLastDimension; ++c)
{
derivative[c] -= mean[c % numParametersPerLastDimension];
}
}
}
}
} // end AftherThreadedComputeDerivative()
/**
* **************** ComputeDerivativeThreaderCallback *******
*/
template <class TFixedImage, class TMovingImage>
ITK_THREAD_RETURN_TYPE
PCAMetric<TFixedImage, TMovingImage>::ComputeDerivativeThreaderCallback(void * arg)
{
assert(arg);
const auto & infoStruct = *static_cast<ThreadInfoType *>(arg);
ThreadIdType threadId = infoStruct.WorkUnitID;
assert(infoStruct.UserData);
const auto & userData = *static_cast<PCAMetricMultiThreaderParameterType *>(infoStruct.UserData);
userData.m_Metric->ThreadedComputeDerivative(threadId);
return ITK_THREAD_RETURN_DEFAULT_VALUE;
} // end omputeDerivativeThreaderCallback()
/**
* ************** LaunchComputeDerivativeThreaderCallback **********
*/
template <class TFixedImage, class TMovingImage>
void
PCAMetric<TFixedImage, TMovingImage>::LaunchComputeDerivativeThreaderCallback() const
{
/** Setup local threader and launch. */
// \todo: is a global threader better performance-wise? check
auto local_threader = MultiThreaderBase::New();
local_threader->SetNumberOfWorkUnits(Self::GetNumberOfWorkUnits());
local_threader->SetSingleMethodAndExecute(
this->ComputeDerivativeThreaderCallback,
const_cast<void *>(static_cast<const void *>(&this->m_PCAMetricThreaderParameters)));
} // end LaunchComputeDerivativeThreaderCallback()
} // end namespace itk
#endif // itkPCAMetric_hxx
|