1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
/*=========================================================================
*
* Copyright UMC Utrecht and contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef elxStatisticalShapePenalty_h
#define elxStatisticalShapePenalty_h
#include "elxIncludes.h" // include first to avoid MSVS warning
#include "itkStatisticalShapePointPenalty.h"
#include <vnl/vnl_matrix.h>
#include <vnl/vnl_vector.h>
namespace elastix
{
using namespace itk;
/**
* \class StatisticalShapePenalty
* \brief An metric based on the itk::StatisticalShapePointPenalty.
*
* The parameters used in this class are:
* \parameter Metric: Select this metric as follows:\n
* <tt>(Metric "StatisticalShapePenalty")</tt>
* \parameter ShrinkageIntensity: The mixing ratio ($\beta$) of the provided
* covariance matrix and an identity matrix.
* $\Sigma' = (1-\beta)\Sigma + \beta \sigma_0^2 I$
* Can be defined for each resolution\n
* example: <tt>(ShrinkageIntensity 0.2)</tt>
* \parameter BaseVariance: The width ($\sigma_0^2$) of the non-informative prior.
* Can be defined for each resolution\n
* example: <tt>(BaseVariance 1000.0)</tt>
*
* \author F.F. Berendsen, Image Sciences Institute, UMC Utrecht, The Netherlands
* \note This work was funded by the projects Care4Me and Mediate.
* \note If you use the StatisticalShapePenalty anywhere we would appreciate if you cite the following article:\n
* F.F. Berendsen et al., Free-form image registration regularized by a statistical shape model:
* application to organ segmentation in cervical MR, Comput. Vis. Image Understand. (2013),
* http://dx.doi.org/10.1016/j.cviu.2012.12.006
*
* \ingroup Metrics
*/
template <class TElastix>
class ITK_TEMPLATE_EXPORT StatisticalShapePenalty
: public StatisticalShapePointPenalty<typename MetricBase<TElastix>::FixedPointSetType,
typename MetricBase<TElastix>::MovingPointSetType>
, public MetricBase<TElastix>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(StatisticalShapePenalty);
/** Standard ITK-stuff. */
using Self = StatisticalShapePenalty;
using Superclass1 = StatisticalShapePointPenalty<typename MetricBase<TElastix>::FixedPointSetType,
typename MetricBase<TElastix>::MovingPointSetType>;
using Superclass2 = MetricBase<TElastix>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro(StatisticalShapePenalty, StatisticalShapePointPenalty);
/** Name of this class.
* Use this name in the parameter file to select this specific metric. \n
* example: <tt>(Metric "StatisticalShapePenalty")</tt>\n
*/
elxClassNameMacro("StatisticalShapePenalty");
/** Typedefs from the superclass. */
using typename Superclass1::CoordinateRepresentationType;
using typename Superclass1::FixedPointSetType;
using typename Superclass1::FixedPointSetConstPointer;
using typename Superclass1::MovingPointSetType;
using typename Superclass1::MovingPointSetConstPointer;
// using typename Superclass1::FixedImageRegionType;
using typename Superclass1::TransformType;
using typename Superclass1::TransformPointer;
using typename Superclass1::InputPointType;
using typename Superclass1::OutputPointType;
using typename Superclass1::TransformParametersType;
using typename Superclass1::TransformJacobianType;
// using typename Superclass1::RealType;
using typename Superclass1::FixedImageMaskType;
using typename Superclass1::FixedImageMaskPointer;
using typename Superclass1::MovingImageMaskType;
using typename Superclass1::MovingImageMaskPointer;
using typename Superclass1::MeasureType;
using typename Superclass1::DerivativeType;
using typename Superclass1::ParametersType;
using CoordRepType = typename OutputPointType::CoordRepType;
using VnlVectorType = vnl_vector<CoordRepType>;
/** Other typedef's. */
/*typedef itk::AdvancedTransform<
CoordRepType,
itkGetStaticConstMacro( FixedImageDimension ),
itkGetStaticConstMacro( MovingImageDimension ) > ITKBaseType;
*/
using CombinationTransformType = itk::AdvancedCombinationTransform<CoordRepType, Self::FixedImageDimension>;
using InitialTransformType = typename CombinationTransformType::InitialTransformType;
/** Typedefs inherited from elastix. */
using typename Superclass2::ElastixType;
using typename Superclass2::RegistrationType;
using ITKBaseType = typename Superclass2::ITKBaseType;
using typename Superclass2::FixedImageType;
using typename Superclass2::MovingImageType;
/** The fixed image dimension. */
itkStaticConstMacro(FixedImageDimension, unsigned int, FixedImageType::ImageDimension);
/** The moving image dimension. */
itkStaticConstMacro(MovingImageDimension, unsigned int, MovingImageType::ImageDimension);
/** Assuming fixed and moving pointsets are of equal type, which implicitly
* assumes that the fixed and moving image are of the same type.
*/
using PointSetType = FixedPointSetType;
using ImageType = FixedImageType;
/** Sets up a timer to measure the initialization time and calls the
* Superclass' implementation.
*/
void
Initialize() override;
/**
* Do some things before registration:
* \li Load and set the pointsets.
*/
void
BeforeRegistration() override;
void
BeforeEachResolution() override;
/** Function to read the corresponding points. */
unsigned int
ReadLandmarks(const std::string & landmarkFileName,
typename PointSetType::Pointer & pointSet,
const typename ImageType::ConstPointer image);
unsigned int
ReadShape(const std::string & ShapeFileName, typename PointSetType::Pointer & pointSet);
/** Overwrite to silence warning. */
void
SelectNewSamples() override
{}
protected:
/** The constructor. */
StatisticalShapePenalty() = default;
/** The destructor. */
~StatisticalShapePenalty() override = default;
private:
elxOverrideGetSelfMacro;
};
} // end namespace elastix
#ifndef ITK_MANUAL_INSTANTIATION
# include "elxStatisticalShapePenalty.hxx"
#endif
#endif // end #ifndef elxStatisticalShapePenalty_h
|