File: itkSumSquaredTissueVolumeDifferenceImageToImageMetric.hxx

package info (click to toggle)
elastix 5.2.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 42,480 kB
  • sloc: cpp: 68,403; lisp: 4,118; python: 1,013; xml: 182; sh: 177; makefile: 33
file content (773 lines) | stat: -rw-r--r-- 29,687 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
/*=========================================================================
 *
 *  Copyright UMC Utrecht and contributors
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *        http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef _itkSumSquaredTissueVolumeDifferenceImageToImageMetric_txx
#define _itkSumSquaredTissueVolumeDifferenceImageToImageMetric_txx

#include "itkSumSquaredTissueVolumeDifferenceImageToImageMetric.h"
#include <vnl/algo/vnl_matrix_update.h>

namespace itk
{

/**
 * ******************* Constructor *******************
 */

template <class TFixedImage, class TMovingImage>
SumSquaredTissueVolumeDifferenceImageToImageMetric<TFixedImage,
                                                   TMovingImage>::SumSquaredTissueVolumeDifferenceImageToImageMetric()
{
  this->SetUseImageSampler(true);
  this->SetUseFixedImageLimiter(false);
  this->SetUseMovingImageLimiter(false);

} // end Constructor

/**
 * ******************* PrintSelf *******************
 */

template <class TFixedImage, class TMovingImage>
void
SumSquaredTissueVolumeDifferenceImageToImageMetric<TFixedImage, TMovingImage>::PrintSelf(std::ostream & os,
                                                                                         Indent         indent) const
{
  Superclass::PrintSelf(os, indent);

  os << indent << "AirValue: " << this->m_AirValue << std::endl;
  os << indent << "TissueValue: " << this->m_TissueValue << std::endl;

} // end PrintSelf()


/**
 * ******************* GetValueSingleThreaded *******************
 */

template <class TFixedImage, class TMovingImage>
auto
SumSquaredTissueVolumeDifferenceImageToImageMetric<TFixedImage, TMovingImage>::GetValueSingleThreaded(
  const TransformParametersType & parameters) const -> MeasureType
{
  itkDebugMacro("GetValue( " << parameters << " ) ");

  /** Initialize some variables. */
  Superclass::m_NumberOfPixelsCounted = 0;
  MeasureType measure{};

  /** Matrix to store the spatial Jacobian, dT/dx. */
  SpatialJacobianType spatialJac;

  /** Make sure the transform parameters are up to date. */
  /** Update the imageSampler.  */
  this->BeforeThreadedGetValueAndDerivative(parameters);

  /** and get a handle to the sample container. */
  ImageSampleContainerPointer sampleContainer = this->GetImageSampler()->GetOutput();

  /** Loop over the fixed image samples to calculate the mean squares. */
  for (const auto & fixedImageSample : *sampleContainer)
  {
    /** Read fixed coordinates and initialize some variables. */
    const FixedImagePointType & fixedPoint = fixedImageSample.m_ImageCoordinates;
    RealType                    movingImageValue;

    /** Transform point. */
    const MovingImagePointType mappedPoint = this->TransformPoint(fixedPoint);

    /** Check if the point is inside the moving mask. */
    bool sampleOk = this->IsInsideMovingMask(mappedPoint);

    /** Compute the moving image value and check if the point is
     * inside the moving image buffer.
     */
    if (sampleOk)
    {
      sampleOk = this->Superclass::EvaluateMovingImageValueAndDerivative(mappedPoint, movingImageValue, nullptr);
    }

    if (sampleOk)
    {
      Superclass::m_NumberOfPixelsCounted++;

      /** Get the SpatialJacobian dT/dx. */
      Superclass::m_AdvancedTransform->GetSpatialJacobian(fixedPoint, spatialJac);

      /** Compute the determinant of the Transform Jacobian |dT/dx|. */
      const RealType detjac = static_cast<RealType>(vnl_det(spatialJac.GetVnlMatrix()));

      /** Get the fixed image value. */
      const auto fixedImageValue = static_cast<RealType>(fixedImageSample.m_ImageValue);

      /** The difference squared. */
      const RealType diff = ((fixedImageValue - this->m_AirValue) - detjac * (movingImageValue - this->m_AirValue)) /
                            (this->m_TissueValue - this->m_AirValue);
      measure += diff * diff;

    } // end if sampleOk

  } // end for loop over the image sample container

  /** Check if enough samples were valid. */
  this->CheckNumberOfSamples(sampleContainer->Size(), Superclass::m_NumberOfPixelsCounted);

  /** Update measure value. */
  double sum = 0.0;
  if (Superclass::m_NumberOfPixelsCounted > 0)
  {
    sum = 1.0F / static_cast<double>(Superclass::m_NumberOfPixelsCounted);
  }
  measure *= sum;

  /** Return the mean squares measure value. */
  return measure;

} // end GetValueSingleThreaded()


/**
 * ******************* GetValue *******************
 */

template <class TFixedImage, class TMovingImage>
auto
SumSquaredTissueVolumeDifferenceImageToImageMetric<TFixedImage, TMovingImage>::GetValue(
  const TransformParametersType & parameters) const -> MeasureType
{

  /** Option for now to still use the single threaded code. */
  if (!Superclass::m_UseMultiThread)
  {
    return this->GetValueSingleThreaded(parameters);
  }

  /** Call non-thread-safe stuff, such as:
   *   this->SetTransformParameters( parameters );
   *   this->GetImageSampler()->Update();
   * Because of these calls GetValue itself is not thread-safe,
   * so cannot be called multiple times simultaneously.
   * This is however needed in the CombinationImageToImageMetric.
   * In that case, you need to:
   * - switch the use of this function to on, using m_UseMetricSingleThreaded = true
   * - call BeforeThreadedGetValueAndDerivative once (single-threaded) before calling GetValue
   * - switch the use of this function to off, using m_UseMetricSingleThreaded = false
   * - Now you can call GetValue multi-threaded.
   */
  this->BeforeThreadedGetValueAndDerivative(parameters);

  /** Launch multi-threading metric */
  this->LaunchGetValueThreaderCallback();

  /** Gather the metric values from all threads. */
  MeasureType value{};
  this->AfterThreadedGetValue(value);

  return value;

} // end GetValue()


/**
 * ******************* ThreadedGetValue *******************
 */

template <class TFixedImage, class TMovingImage>
void
SumSquaredTissueVolumeDifferenceImageToImageMetric<TFixedImage, TMovingImage>::ThreadedGetValue(
  ThreadIdType threadId) const
{
  /*Create variables to store intermediate results. Circumvent false sharing*/
  unsigned long numberOfPixelsCounted = 0;
  MeasureType   measure{};

  /** Matrix to store the spatial Jacobian, dT/dx. */
  SpatialJacobianType spatialJac;

  /** Get a handle to the sample container. */
  ImageSampleContainerPointer sampleContainer = this->GetImageSampler()->GetOutput();
  const unsigned long         sampleContainerSize = sampleContainer->Size();

  /** Get the samples for this thread. */
  const unsigned long nSamplesPerThread = static_cast<unsigned long>(
    std::ceil(static_cast<double>(sampleContainerSize) / static_cast<double>(Self::GetNumberOfWorkUnits())));

  const auto pos_begin = std::min<size_t>(nSamplesPerThread * threadId, sampleContainerSize);
  const auto pos_end = std::min<size_t>(nSamplesPerThread * (threadId + 1), sampleContainerSize);

  /** Create iterator over the sample container. */
  const auto beginOfSampleContainer = sampleContainer->cbegin();
  const auto threader_fbegin = beginOfSampleContainer + pos_begin;
  const auto threader_fend = beginOfSampleContainer + pos_end;

  /** Loop over the fixed image to calculate the mean squares. */
  for (auto threader_fiter = threader_fbegin; threader_fiter != threader_fend; ++threader_fiter)
  {
    /** Read fixed coordinates and initialize some variables. */
    const FixedImagePointType & fixedPoint = threader_fiter->m_ImageCoordinates;
    RealType                    movingImageValue;

    /** Transform point. */
    const MovingImagePointType mappedPoint = this->TransformPoint(fixedPoint);

    /** Check if the point is inside the moving mask. */
    bool sampleOk = this->IsInsideMovingMask(mappedPoint);

    /** Compute the moving image value M(T(x)) and check if
     * the point is inside the moving image buffer.
     */
    if (sampleOk)
    {
      sampleOk = this->FastEvaluateMovingImageValueAndDerivative(mappedPoint, movingImageValue, nullptr, threadId);
    }

    if (sampleOk)
    {
      ++numberOfPixelsCounted;

      /** Get the fixed image value. */
      const RealType fixedImageValue = static_cast<RealType>(threader_fiter->m_ImageValue);

      /** Get the SpatialJacobian dT/dx. */
      Superclass::m_AdvancedTransform->GetSpatialJacobian(fixedPoint, spatialJac);

      /** Compute the determinant of the Transform Jacobian |dT/dx|. */
      const RealType detjac = static_cast<RealType>(vnl_det(spatialJac.GetVnlMatrix()));

      /** The difference squared. */
      const RealType diff = ((fixedImageValue - this->m_AirValue) - detjac * (movingImageValue - this->m_AirValue)) /
                            (this->m_TissueValue - this->m_AirValue);
      measure += diff * diff;

    } // end if sampleOk

  } // end for loop over the image sample container

  /** Only update these variables at the end to prevent unnecessary "false sharing". */
  Superclass::m_GetValueAndDerivativePerThreadVariables[threadId].st_NumberOfPixelsCounted = numberOfPixelsCounted;
  Superclass::m_GetValueAndDerivativePerThreadVariables[threadId].st_Value = measure;

} // end ThreadedGetValue()


/**
 * ******************* AfterThreadedGetValue *******************
 */

template <class TFixedImage, class TMovingImage>
void
SumSquaredTissueVolumeDifferenceImageToImageMetric<TFixedImage, TMovingImage>::AfterThreadedGetValue(
  MeasureType & value) const
{
  const ThreadIdType numberOfThreads = Self::GetNumberOfWorkUnits();

  /** Accumulate the number of pixels. */
  Superclass::m_NumberOfPixelsCounted =
    Superclass::m_GetValueAndDerivativePerThreadVariables[0].st_NumberOfPixelsCounted;
  for (ThreadIdType i = 1; i < numberOfThreads; ++i)
  {
    Superclass::m_NumberOfPixelsCounted +=
      Superclass::m_GetValueAndDerivativePerThreadVariables[i].st_NumberOfPixelsCounted;
  }

  /** Check if enough samples were valid. */
  ImageSampleContainerPointer sampleContainer = this->GetImageSampler()->GetOutput();
  this->CheckNumberOfSamples(sampleContainer->Size(), Superclass::m_NumberOfPixelsCounted);

  /** Accumulate values. */
  value = MeasureType{};
  for (ThreadIdType i = 0; i < numberOfThreads; ++i)
  {
    value += Superclass::m_GetValueAndDerivativePerThreadVariables[i].st_Value;

    /** Reset this variable for the next iteration. */
    Superclass::m_GetValueAndDerivativePerThreadVariables[i].st_Value = MeasureType{};
  }
  value /= static_cast<DerivativeValueType>(Superclass::m_NumberOfPixelsCounted);

} // end AfterThreadedGetValue()


/**
 * ******************* GetDerivative *******************
 */

template <class TFixedImage, class TMovingImage>
void
SumSquaredTissueVolumeDifferenceImageToImageMetric<TFixedImage, TMovingImage>::GetDerivative(
  const TransformParametersType & parameters,
  DerivativeType &                derivative) const
{
  /** When the derivative is calculated, all information for calculating
   * the metric value is available. It does not cost anything to calculate
   * the metric value now. Therefore, we have chosen to only implement the
   * GetValueAndDerivative(), supplying it with a dummy value variable.
   */
  MeasureType dummyvalue{};
  this->GetValueAndDerivative(parameters, dummyvalue, derivative);

} // end GetDerivative()


/** Get value and derivatives single-threaded */
template <class TFixedImage, class TMovingImage>
void
SumSquaredTissueVolumeDifferenceImageToImageMetric<TFixedImage, TMovingImage>::GetValueAndDerivativeSingleThreaded(
  const TransformParametersType & parameters,
  MeasureType &                   value,
  DerivativeType &                derivative) const
{
  itkDebugMacro("GetValueAndDerivative( " << parameters << " ) ");

  /** Initialize some variables. */
  Superclass::m_NumberOfPixelsCounted = 0;
  MeasureType measure{};
  derivative.set_size(this->GetNumberOfParameters());
  derivative.Fill(DerivativeValueType{});

  /** Array that stores dM(x)/dmu, and the sparse jacobian+indices. */
  NonZeroJacobianIndicesType nzji(Superclass::m_AdvancedTransform->GetNumberOfNonZeroJacobianIndices());
  DerivativeType             imageJacobian(nzji.size());
  TransformJacobianType      jacobian;

  /** Matrix to store the spatial Jacobian, dT/dx. */
  SpatialJacobianType spatialJac;

  /** Matrix to store the scaled inverse spatial Jacobian, det(dT/dx) * (dT/dx)^-1 */
  SpatialJacobianType inverseSpatialJacobian;

  /** Array that stores JacobianOfSpatialJacobian, d(dT/dx)/dmu */
  JacobianOfSpatialJacobianType jacobianOfSpatialJacobian;

  DerivativeType jacobianOfSpatialJacobianDeterminant(nzji.size());

  /** Make sure the transform parameters are up to date. */
  /** Update the imageSampler. */
  this->BeforeThreadedGetValueAndDerivative(parameters);

  /** Get a handle to the sample container. */
  ImageSampleContainerPointer sampleContainer = this->GetImageSampler()->GetOutput();

  /** Loop over the fixed image to calculate the mean squares. */
  for (const auto & fixedImageSample : *sampleContainer)
  {
    /** Read fixed coordinates and initialize some variables. */
    const FixedImagePointType & fixedPoint = fixedImageSample.m_ImageCoordinates;
    RealType                    movingImageValue;
    MovingImageDerivativeType   movingImageDerivative;

    /** Transform point. */
    const MovingImagePointType mappedPoint = this->TransformPoint(fixedPoint);

    /** Check if the point is inside the moving mask. */
    bool sampleOk = this->IsInsideMovingMask(mappedPoint);

    /** Compute the moving image value M(T(x)) and derivative dM/dx and check if
     * the point is inside the moving image buffer.
     */
    if (sampleOk)
    {
      sampleOk =
        this->Superclass::EvaluateMovingImageValueAndDerivative(mappedPoint, movingImageValue, &movingImageDerivative);
    }

    if (sampleOk)
    {
      Superclass::m_NumberOfPixelsCounted++;

      /** Get the fixed image value. */
      const auto fixedImageValue = static_cast<RealType>(fixedImageSample.m_ImageValue);

      /** Get the TransformJacobian dT/dmu. */
      this->EvaluateTransformJacobian(fixedPoint, jacobian, nzji);

      /** Compute the inner products (dM/dx)^T (dT/dmu). */
      this->EvaluateTransformJacobianInnerProduct(jacobian, movingImageDerivative, imageJacobian);

      /** Get the SpatialJacobian dT/dx. */
      Superclass::m_AdvancedTransform->GetSpatialJacobian(fixedPoint, spatialJac);

      /** Compute the determinant of the Transform Jacobian |dT/dx|. */
      const RealType detjac = static_cast<RealType>(vnl_det(spatialJac.GetVnlMatrix()));

      /** Compute the inverse spatialJacobian. */
      inverseSpatialJacobian = spatialJac.GetInverse();

      /** Compute the JacobianOfSpatialJacobian. */
      Superclass::m_AdvancedTransform->GetJacobianOfSpatialJacobian(fixedPoint, jacobianOfSpatialJacobian, nzji);

      /** Compute the dot product of the inverse spatialJacobian and JacobianOfSpatialJacobian
       * to support calculation of the JacobianOfSpatialJacobianDeterminant. */
      this->EvaluateJacobianOfSpatialJacobianDeterminantInnerProduct(
        jacobianOfSpatialJacobian, inverseSpatialJacobian, jacobianOfSpatialJacobianDeterminant);

      /** Compute this pixel's contribution to the measure and derivatives. */
      this->UpdateValueAndDerivativeTerms(fixedImageValue,
                                          movingImageValue,
                                          imageJacobian,
                                          nzji,
                                          detjac,
                                          jacobianOfSpatialJacobianDeterminant,
                                          measure,
                                          derivative);

    } // end if sampleOk

  } // end for loop over the image sample container

  /** Check if enough samples were valid. */
  this->CheckNumberOfSamples(sampleContainer->Size(), Superclass::m_NumberOfPixelsCounted);

  /** Compute the measure value and derivative. */
  double sum = 0.0;
  if (Superclass::m_NumberOfPixelsCounted > 0)
  {
    sum = 1.0F / static_cast<double>(Superclass::m_NumberOfPixelsCounted);
  }
  measure *= sum;
  derivative *= sum;

  /** The return value. */
  value = measure;
}


/**
 * ******************* GetValueAndDerivative *******************
 */

template <class TFixedImage, class TMovingImage>
void
SumSquaredTissueVolumeDifferenceImageToImageMetric<TFixedImage, TMovingImage>::GetValueAndDerivative(
  const TransformParametersType & parameters,
  MeasureType &                   value,
  DerivativeType &                derivative) const
{
  /** Option for now to still use the single threaded code. */
  if (!Superclass::m_UseMultiThread)
  {
    return this->GetValueAndDerivativeSingleThreaded(parameters, value, derivative);
  }

  this->BeforeThreadedGetValueAndDerivative(parameters);

  /** Initialize some threading related parameters. */
  this->InitializeThreadingParameters();

  /** Launch multi-threading metric */
  this->LaunchGetValueAndDerivativeThreaderCallback();

  /** Gather the metric values and derivatives from all threads. */
  this->AfterThreadedGetValueAndDerivative(value, derivative);
} // end GetValueAndDerivative()


/**
 * ******************* ThreadedGetValueAndDerivative *******************
 */

template <class TFixedImage, class TMovingImage>
void
SumSquaredTissueVolumeDifferenceImageToImageMetric<TFixedImage, TMovingImage>::ThreadedGetValueAndDerivative(
  ThreadIdType threadId) const
{
  /*Create variables to store intermediate results. Circumvent false sharing*/
  unsigned long    numberOfPixelsCounted = 0;
  MeasureType      measure{};
  DerivativeType & derivative = Superclass::m_GetValueAndDerivativePerThreadVariables[threadId].st_Derivative;

  /** Array that stores dM(x)/dmu, and the sparse jacobian+indices. */
  NonZeroJacobianIndicesType nzji(Superclass::m_AdvancedTransform->GetNumberOfNonZeroJacobianIndices());
  DerivativeType             imageJacobian(nzji.size());
  TransformJacobianType      jacobian;

  /** Matrix to store the spatial Jacobian, dT/dx. */
  SpatialJacobianType spatialJac;

  /** Matrix to store the scaled inverse spatial Jacobian, det(dT/dx) * (dT/dx)^-1 */
  SpatialJacobianType inverseSpatialJacobian;

  /** Array that stores JacobianOfSpatialJacobian, d(dT/dx)/dmu */
  JacobianOfSpatialJacobianType jacobianOfSpatialJacobian;

  DerivativeType jacobianOfSpatialJacobianDeterminant(nzji.size());

  /** Get a handle to the sample container. */
  ImageSampleContainerPointer sampleContainer = this->GetImageSampler()->GetOutput();
  const unsigned long         sampleContainerSize = sampleContainer->Size();

  /** Get the samples for this thread. */
  const unsigned long nSamplesPerThread = static_cast<unsigned long>(
    std::ceil(static_cast<double>(sampleContainerSize) / static_cast<double>(Self::GetNumberOfWorkUnits())));

  const auto pos_begin = std::min<size_t>(nSamplesPerThread * threadId, sampleContainerSize);
  const auto pos_end = std::min<size_t>(nSamplesPerThread * (threadId + 1), sampleContainerSize);

  /** Create iterator over the sample container. */
  const auto beginOfSampleContainer = sampleContainer->cbegin();
  const auto threader_fbegin = beginOfSampleContainer + pos_begin;
  const auto threader_fend = beginOfSampleContainer + pos_end;

  /** Loop over the fixed image to calculate the mean squares. */
  for (auto threader_fiter = threader_fbegin; threader_fiter != threader_fend; ++threader_fiter)
  {
    /** Read fixed coordinates and initialize some variables. */
    const FixedImagePointType & fixedPoint = threader_fiter->m_ImageCoordinates;
    RealType                    movingImageValue;
    MovingImageDerivativeType   movingImageDerivative;

    /** Transform point. */
    const MovingImagePointType mappedPoint = this->TransformPoint(fixedPoint);

    /** Check if the point is inside the moving mask. */
    bool sampleOk = this->IsInsideMovingMask(mappedPoint);

    /** Compute the moving image value M(T(x)) and derivative dM/dx and check if
     * the point is inside the moving image buffer.
     */
    if (sampleOk)
    {
      sampleOk = this->FastEvaluateMovingImageValueAndDerivative(
        mappedPoint, movingImageValue, &movingImageDerivative, threadId);
    }

    if (sampleOk)
    {
      ++numberOfPixelsCounted;

      /** Get the fixed image value. */
      const RealType fixedImageValue = static_cast<RealType>(threader_fiter->m_ImageValue);

      /** Get the TransformJacobian dT/dmu. */
      this->EvaluateTransformJacobian(fixedPoint, jacobian, nzji);

      /** Compute the inner products (dM/dx)^T (dT/dmu). */
      this->EvaluateTransformJacobianInnerProduct(jacobian, movingImageDerivative, imageJacobian);

      /** Get the SpatialJacobian dT/dx. */
      Superclass::m_AdvancedTransform->GetSpatialJacobian(fixedPoint, spatialJac);

      /** Compute the determinant of the Transform Jacobian |dT/dx|. */
      const RealType detjac = static_cast<RealType>(vnl_det(spatialJac.GetVnlMatrix()));

      /** Compute the inverse spatialJacobian. */
      inverseSpatialJacobian = spatialJac.GetInverse();

      /** Compute the JacobianOfSpatialJacobian. */
      Superclass::m_AdvancedTransform->GetJacobianOfSpatialJacobian(fixedPoint, jacobianOfSpatialJacobian, nzji);

      /** Compute the dot product of the inverse spatialJacobian and JacobianOfSpatialJacobian
       * to support calculation of the JacobianOfSpatialJacobianDeterminant.
       */
      this->EvaluateJacobianOfSpatialJacobianDeterminantInnerProduct(
        jacobianOfSpatialJacobian, inverseSpatialJacobian, jacobianOfSpatialJacobianDeterminant);

      /** Compute this pixel's contribution to the measure and derivatives. */
      this->UpdateValueAndDerivativeTerms(fixedImageValue,
                                          movingImageValue,
                                          imageJacobian,
                                          nzji,
                                          detjac,
                                          jacobianOfSpatialJacobianDeterminant,
                                          measure,
                                          derivative);

    } // end if sampleOk
  }

  /** Only update these variables at the end to prevent unnecessary "false sharing". */
  Superclass::m_GetValueAndDerivativePerThreadVariables[threadId].st_NumberOfPixelsCounted = numberOfPixelsCounted;
  Superclass::m_GetValueAndDerivativePerThreadVariables[threadId].st_Value = measure;
} // end ThreadedGetValueAndDerivative()


/**
 * *************** AfterThreadedGetValueAndDerivative ****************
 */

template <class TFixedImage, class TMovingImage>
void
SumSquaredTissueVolumeDifferenceImageToImageMetric<TFixedImage, TMovingImage>::AfterThreadedGetValueAndDerivative(
  MeasureType &    value,
  DerivativeType & derivative) const
{
  const ThreadIdType numberOfThreads = Self::GetNumberOfWorkUnits();

  /** Accumulate the number of pixels. */
  Superclass::m_NumberOfPixelsCounted =
    Superclass::m_GetValueAndDerivativePerThreadVariables[0].st_NumberOfPixelsCounted;
  for (ThreadIdType i = 1; i < numberOfThreads; ++i)
  {
    Superclass::m_NumberOfPixelsCounted +=
      Superclass::m_GetValueAndDerivativePerThreadVariables[i].st_NumberOfPixelsCounted;
  }

  /** Check if enough samples were valid. */
  ImageSampleContainerPointer sampleContainer = this->GetImageSampler()->GetOutput();
  this->CheckNumberOfSamples(sampleContainer->Size(), Superclass::m_NumberOfPixelsCounted);

  /** Accumulate values. */
  value = MeasureType{};
  for (ThreadIdType i = 0; i < numberOfThreads; ++i)
  {
    value += Superclass::m_GetValueAndDerivativePerThreadVariables[i].st_Value;

    /** Reset this variable for the next iteration. */
    Superclass::m_GetValueAndDerivativePerThreadVariables[i].st_Value = MeasureType{};
  }

  value /= static_cast<RealType>(Superclass::m_NumberOfPixelsCounted);

  /** Accumulate derivatives. */
  Superclass::m_ThreaderMetricParameters.st_DerivativePointer = derivative.begin();
  Superclass::m_ThreaderMetricParameters.st_NormalizationFactor =
    static_cast<DerivativeValueType>(Superclass::m_NumberOfPixelsCounted);

  this->m_Threader->SetSingleMethodAndExecute(this->AccumulateDerivativesThreaderCallback,
                                              &(Superclass::m_ThreaderMetricParameters));

} // end AfterThreadedGetValueAndDerivative()


/**
 * *************** EvaluateTransformJacobianInnerProduct ****************
 */

template <class TFixedImage, class TMovingImage>
void
SumSquaredTissueVolumeDifferenceImageToImageMetric<TFixedImage, TMovingImage>::EvaluateTransformJacobianInnerProduct(
  const TransformJacobianType &     jacobian,
  const MovingImageDerivativeType & movingImageDerivative,
  DerivativeType &                  imageJacobian) const
{
  typename TransformJacobianType::const_iterator jac = jacobian.begin();
  imageJacobian.fill(0.0);

  for (unsigned int dim = 0; dim < FixedImageDimension; ++dim)
  {
    const double imDeriv = movingImageDerivative[dim] / (this->m_TissueValue - this->m_AirValue);

    for (auto & imageJacobianElement : imageJacobian)
    {
      imageJacobianElement += (*jac) * imDeriv;
      ++jac;
    }
  }

} // end EvaluateTransformJacobianInnerProduct()


/**
 * *************** UpdateValueAndDerivativeTerms ***************************
 */

template <class TFixedImage, class TMovingImage>
void
SumSquaredTissueVolumeDifferenceImageToImageMetric<TFixedImage, TMovingImage>::UpdateValueAndDerivativeTerms(
  const RealType                     fixedImageValue,
  const RealType                     movingImageValue,
  const DerivativeType &             imageJacobian,
  const NonZeroJacobianIndicesType & nzji,
  const RealType                     spatialJacobianDeterminant,
  const DerivativeType &             jacobianOfSpatialJacobianDeterminant,
  MeasureType &                      measure,
  DerivativeType &                   deriv) const
{
  /** The difference squared. */
  const RealType diff =
    ((fixedImageValue - this->m_AirValue) - spatialJacobianDeterminant * (movingImageValue - this->m_AirValue)) /
    (this->m_TissueValue - this->m_AirValue);
  measure += diff * diff;

  /** Calculate the contributions to the derivatives with respect to each parameter. */
  const RealType diff_2 = diff * -2.0;

  const auto numberOfParameters = this->GetNumberOfParameters();

  if (nzji.size() == numberOfParameters)
  {
    /** Loop over all Jacobians. */
    typename DerivativeType::const_iterator imjacit = imageJacobian.begin();
    typename DerivativeType::const_iterator jsjdit = jacobianOfSpatialJacobianDeterminant.begin();
    typename DerivativeType::iterator       derivit = deriv.begin();
    for (unsigned int mu = 0; mu < numberOfParameters; ++mu)
    {
      (*derivit) +=
        diff_2 * spatialJacobianDeterminant *
        ((*jsjdit) * (movingImageValue - this->m_AirValue) / (this->m_TissueValue - this->m_AirValue) + (*imjacit));
      ++imjacit;
      ++jsjdit;
      ++derivit;
    }
  }
  else
  {
    /** Only pick the nonzero Jacobians. */
    for (unsigned int i = 0; i < imageJacobian.GetSize(); ++i)
    {
      const unsigned int index = nzji[i];
      deriv[index] += diff_2 * spatialJacobianDeterminant *
                      (jacobianOfSpatialJacobianDeterminant[i] * (movingImageValue - this->m_AirValue) /
                         (this->m_TissueValue - this->m_AirValue) +
                       imageJacobian[i]);
    }
  }
} // end UpdateValueAndDerivativeTerms()


/**
 * ********** EvaluateJacobianOfSpatialJacobianDeterminantInnerProduct ******
 */

template <class TFixedImage, class TMovingImage>
void
SumSquaredTissueVolumeDifferenceImageToImageMetric<TFixedImage, TMovingImage>::
  EvaluateJacobianOfSpatialJacobianDeterminantInnerProduct(
    const JacobianOfSpatialJacobianType & jacobianOfSpatialJacobian,
    const SpatialJacobianType &           inverseSpatialJacobian,
    DerivativeType &                      jacobianOfSpatialJacobianDeterminant) const
{
  using JacobianOfSpatialJacobianIteratorType = typename JacobianOfSpatialJacobianType::const_iterator;
  using DerivativeIteratorType = typename DerivativeType::iterator;

  jacobianOfSpatialJacobianDeterminant.Fill(0.0);

  JacobianOfSpatialJacobianIteratorType jsjit = jacobianOfSpatialJacobian.begin();
  DerivativeIteratorType                jsjdit = jacobianOfSpatialJacobianDeterminant.begin();

  const unsigned int sizejacobianOfSpatialJacobianDeterminant = jacobianOfSpatialJacobianDeterminant.GetSize();

  /** matrix product first, then trace. */
  for (unsigned int mu = 0; mu < sizejacobianOfSpatialJacobianDeterminant; ++mu)
  {
    for (unsigned int diag = 0; diag < FixedImageDimension; ++diag)
    {
      for (unsigned int idx = 0; idx < FixedImageDimension; ++idx)
      {
        (*jsjdit) += inverseSpatialJacobian(diag, idx) * (*jsjit)(idx, diag);
      }
    }
    ++jsjdit;
    ++jsjit;
  }

} // end EvaluateJacobianOfSpatialJacobianDeterminantInnerProduct()


} // end namespace itk

#endif // end #ifndef _itkSumSquaredTissueVolumeDifferenceImageToImageMetric_hxx