1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
/*=========================================================================
*
* Copyright UMC Utrecht and contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef elxVarianceOverLastDimensionMetric_h
#define elxVarianceOverLastDimensionMetric_h
#include "elxIncludes.h" // include first to avoid MSVS warning
#include "itkVarianceOverLastDimensionImageMetric.h"
#include "itkAdvancedBSplineDeformableTransform.h"
#include "itkStackTransform.h"
namespace elastix
{
/** \class VarianceOverLastDimensionMetric
* \brief Compute the sum of variances over the slowest varying dimension in the moving image.
*
* For a description of this metric see the paper:\n
* <em>Nonrigid registration of dynamic medical imaging data using
* nD+t B-splines and a groupwise optimization approach</em>,
* C.T. Metz, S. Klein, M. Schaap, T. van Walsum and W.J. Niessen,
* Medical Image Analysis, in press.
*
* This metric is based on the AdvancedImageToImageMetric.
* It is templated over the type of the fixed and moving images to be compared.
*
* This metric computes the sum of variances over the slowest varying dimension in
* the moving image. The spatial positions of the moving image are established
* through a Transform. Pixel values are taken from the Moving image.
*
* This implementation is based on the AdvancedImageToImageMetric, which means that:
* \li It uses the ImageSampler-framework
* \li It makes use of the compact support of B-splines, in case of B-spline transforms.
* \li Image derivatives are computed using either the B-spline interpolator's implementation
* or by nearest neighbor interpolation of a precomputed central difference image.
* \li A minimum number of samples that should map within the moving image (mask) can be specified.
*
* \parameter SampleLastDimensionRandomly: randomly sample a number of time points to
* to compute the variance from. When set to "false", all time points are taken into
* account. When set to "true", a random number of time points is selected, which can
* be set with parameter NumSamplesLastDimension. \n
* \parameter NumSamplesLastDimension: the number of random samples to take in the time
* time direction of the data when SampleLastDimensionRandomly is set to true.
* \parameter UseZeroAverageDisplacementConstraint: uses the zero average displacement constraint, as described in
* <em>Nonrigid registration of dynamic medical imaging data using nD+t B-splines and a groupwise optimization
* approach</em>, Metz et al., Medical Image Analysis, 2011. Subtract the over time computed mean parameter value
* from each parameter. This should be used when registration is performed directly on the moving image, without
* using a fixed image. Possible values are "true" or "false". Default is "true".
*
* \ingroup RegistrationMetrics
* \ingroup Metrics
*/
template <class TElastix>
class ITK_TEMPLATE_EXPORT VarianceOverLastDimensionMetric
: public itk::VarianceOverLastDimensionImageMetric<typename MetricBase<TElastix>::FixedImageType,
typename MetricBase<TElastix>::MovingImageType>
, public MetricBase<TElastix>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(VarianceOverLastDimensionMetric);
/** Standard ITK-stuff. */
using Self = VarianceOverLastDimensionMetric;
using Superclass1 = itk::VarianceOverLastDimensionImageMetric<typename MetricBase<TElastix>::FixedImageType,
typename MetricBase<TElastix>::MovingImageType>;
using Superclass2 = MetricBase<TElastix>;
using Pointer = itk::SmartPointer<Self>;
using ConstPointer = itk::SmartPointer<const Self>;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro(VarianceOverLastDimensionMetric, itk::VarianceOverLastDimensionImageMetric);
/** Name of this class.
* Use this name in the parameter file to select this specific metric. \n
* example: <tt>(Metric "VarianceOverLastDimensionMetric")</tt>\n
*/
elxClassNameMacro("VarianceOverLastDimensionMetric");
/** Typedefs from the superclass. */
using typename Superclass1::CoordinateRepresentationType;
using typename Superclass1::ScalarType;
using typename Superclass1::MovingImageType;
using typename Superclass1::MovingImagePixelType;
using typename Superclass1::MovingImageConstPointer;
using typename Superclass1::FixedImageType;
using typename Superclass1::FixedImageConstPointer;
using typename Superclass1::FixedImageRegionType;
using typename Superclass1::FixedImageSizeType;
using typename Superclass1::TransformType;
using typename Superclass1::TransformPointer;
using typename Superclass1::InputPointType;
using typename Superclass1::OutputPointType;
using typename Superclass1::TransformParametersType;
using typename Superclass1::TransformJacobianType;
using typename Superclass1::InterpolatorType;
using typename Superclass1::InterpolatorPointer;
using typename Superclass1::RealType;
using typename Superclass1::GradientPixelType;
using typename Superclass1::GradientImageType;
using typename Superclass1::GradientImagePointer;
using typename Superclass1::FixedImageMaskType;
using typename Superclass1::FixedImageMaskPointer;
using typename Superclass1::MovingImageMaskType;
using typename Superclass1::MovingImageMaskPointer;
using typename Superclass1::MeasureType;
using typename Superclass1::DerivativeType;
using typename Superclass1::ParametersType;
using typename Superclass1::FixedImagePixelType;
using typename Superclass1::MovingImageRegionType;
using typename Superclass1::ImageSamplerType;
using typename Superclass1::ImageSamplerPointer;
using typename Superclass1::ImageSampleContainerType;
using typename Superclass1::ImageSampleContainerPointer;
using typename Superclass1::FixedImageLimiterType;
using typename Superclass1::MovingImageLimiterType;
using typename Superclass1::FixedImageLimiterOutputType;
using typename Superclass1::MovingImageLimiterOutputType;
using typename Superclass1::MovingImageDerivativeScalesType;
/** The fixed image dimension. */
itkStaticConstMacro(FixedImageDimension, unsigned int, FixedImageType::ImageDimension);
/** The moving image dimension. */
itkStaticConstMacro(MovingImageDimension, unsigned int, MovingImageType::ImageDimension);
/** Typedef's inherited from Elastix. */
using typename Superclass2::ElastixType;
using typename Superclass2::RegistrationType;
using ITKBaseType = typename Superclass2::ITKBaseType;
/** Typedef's for the B-spline transform. */
using BSplineTransformBaseType = itk::AdvancedBSplineDeformableTransformBase<ScalarType, FixedImageDimension>;
using CombinationTransformType = itk::AdvancedCombinationTransform<ScalarType, FixedImageDimension>;
using StackTransformType = itk::StackTransform<ScalarType, FixedImageDimension, MovingImageDimension>;
using ReducedDimensionBSplineTransformBaseType =
itk::AdvancedBSplineDeformableTransformBase<ScalarType, FixedImageDimension - 1>;
/** Sets up a timer to measure the initialization time and
* calls the Superclass' implementation.
*/
void
Initialize() override;
/**
* Do some things before registration:
* \li check the direction cosines
*/
void
BeforeRegistration() override;
/**
* Do some things before each resolution:
* \li Set CheckNumberOfSamples setting
* \li Set UseNormalization setting
*/
void
BeforeEachResolution() override;
protected:
/** The constructor. */
VarianceOverLastDimensionMetric() = default;
/** The destructor. */
~VarianceOverLastDimensionMetric() override = default;
private:
elxOverrideGetSelfMacro;
};
} // end namespace elastix
#ifndef ITK_MANUAL_INSTANTIATION
# include "elxVarianceOverLastDimensionMetric.hxx"
#endif
#endif // end #ifndef elxVarianceOverLastDimensionMetric_h
|