1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
/*=========================================================================
*
* Copyright UMC Utrecht and contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkVarianceOverLastDimensionImageMetric_h
#define itkVarianceOverLastDimensionImageMetric_h
#include "itkSmoothingRecursiveGaussianImageFilter.h"
#include "itkImageRandomCoordinateSampler.h"
#include "itkNearestNeighborInterpolateImageFunction.h"
#include "itkAdvancedImageToImageMetric.h"
namespace itk
{
/** \class VarianceOverLastDimensionImageMetric
* \brief Compute the sum of variances over the slowest varying dimension in the moving image.
*
* This metric is based on the AdvancedImageToImageMetric.
* It is templated over the type of the fixed and moving images to be compared.
*
* This metric computes the sum of variances over the slowest varying dimension in
* the moving image. The spatial positions of the moving image are established
* through a Transform. Pixel values are taken from the Moving image.
*
* This implementation is based on the AdvancedImageToImageMetric, which means that:
* \li It uses the ImageSampler-framework
* \li It makes use of the compact support of B-splines, in case of B-spline transforms.
* \li Image derivatives are computed using either the B-spline interpolator's implementation
* or by nearest neighbor interpolation of a precomputed central difference image.
* \li A minimum number of samples that should map within the moving image (mask) can be specified.
*
* \ingroup RegistrationMetrics
* \ingroup Metrics
*/
template <class TFixedImage, class TMovingImage>
class ITK_TEMPLATE_EXPORT VarianceOverLastDimensionImageMetric
: public AdvancedImageToImageMetric<TFixedImage, TMovingImage>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(VarianceOverLastDimensionImageMetric);
/** Standard class typedefs. */
using Self = VarianceOverLastDimensionImageMetric;
using Superclass = AdvancedImageToImageMetric<TFixedImage, TMovingImage>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
using typename Superclass::FixedImageRegionType;
using FixedImageSizeType = typename FixedImageRegionType::SizeType;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro(VarianceOverLastDimensionImageMetric, AdvancedImageToImageMetric);
/** Set functions. */
itkSetMacro(SampleLastDimensionRandomly, bool);
itkSetMacro(NumSamplesLastDimension, unsigned int);
itkSetMacro(NumAdditionalSamplesFixed, unsigned int);
itkSetMacro(ReducedDimensionIndex, unsigned int);
itkSetMacro(UseZeroAverageDisplacementConstraint, bool);
itkSetMacro(GridSize, FixedImageSizeType);
itkSetMacro(TransformIsStackTransform, bool);
/** Get functions. */
itkGetConstMacro(SampleLastDimensionRandomly, bool);
itkGetConstMacro(NumSamplesLastDimension, int);
/** Typedefs from the superclass. */
using typename Superclass::CoordinateRepresentationType;
using typename Superclass::MovingImageType;
using typename Superclass::MovingImagePixelType;
using typename Superclass::MovingImageConstPointer;
using typename Superclass::FixedImageType;
using typename Superclass::FixedImageConstPointer;
using typename Superclass::TransformType;
using typename Superclass::TransformPointer;
using typename Superclass::InputPointType;
using typename Superclass::OutputPointType;
using typename Superclass::TransformParametersType;
using typename Superclass::TransformJacobianType;
using typename Superclass::InterpolatorType;
using typename Superclass::InterpolatorPointer;
using typename Superclass::RealType;
using typename Superclass::GradientPixelType;
using typename Superclass::GradientImageType;
using typename Superclass::GradientImagePointer;
using typename Superclass::FixedImageMaskType;
using typename Superclass::FixedImageMaskPointer;
using typename Superclass::MovingImageMaskType;
using typename Superclass::MovingImageMaskPointer;
using typename Superclass::MeasureType;
using typename Superclass::DerivativeType;
using typename Superclass::DerivativeValueType;
using typename Superclass::ParametersType;
using typename Superclass::FixedImagePixelType;
using typename Superclass::MovingImageRegionType;
using typename Superclass::ImageSamplerType;
using typename Superclass::ImageSamplerPointer;
using typename Superclass::ImageSampleContainerType;
using typename Superclass::ImageSampleContainerPointer;
using typename Superclass::FixedImageLimiterType;
using typename Superclass::MovingImageLimiterType;
using typename Superclass::FixedImageLimiterOutputType;
using typename Superclass::MovingImageLimiterOutputType;
using typename Superclass::MovingImageDerivativeScalesType;
/** The fixed image dimension. */
itkStaticConstMacro(FixedImageDimension, unsigned int, FixedImageType::ImageDimension);
/** The moving image dimension. */
itkStaticConstMacro(MovingImageDimension, unsigned int, MovingImageType::ImageDimension);
/** Get the value for single valued optimizers. */
MeasureType
GetValue(const TransformParametersType & parameters) const override;
/** Get the derivatives of the match measure. */
void
GetDerivative(const TransformParametersType & parameters, DerivativeType & derivative) const override;
/** Get value and derivatives for multiple valued optimizers. */
void
GetValueAndDerivative(const TransformParametersType & parameters,
MeasureType & Value,
DerivativeType & Derivative) const override;
/** Initialize the Metric by making sure that all the components
* are present and plugged together correctly.
* \li Call the superclass' implementation. */
void
Initialize() override;
protected:
VarianceOverLastDimensionImageMetric();
~VarianceOverLastDimensionImageMetric() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override;
/** Protected Typedefs ******************/
/** Typedefs inherited from superclass */
using typename Superclass::FixedImageIndexType;
using typename Superclass::FixedImageIndexValueType;
using typename Superclass::MovingImageIndexType;
using typename Superclass::FixedImagePointType;
using FixedImageContinuousIndexType =
typename itk::ContinuousIndex<CoordinateRepresentationType, FixedImageDimension>;
using typename Superclass::MovingImagePointType;
using typename Superclass::MovingImageContinuousIndexType;
using typename Superclass::BSplineInterpolatorType;
using typename Superclass::MovingImageDerivativeType;
using typename Superclass::NonZeroJacobianIndicesType;
/** Computes the innerproduct of transform Jacobian with moving image gradient.
* The results are stored in imageJacobian, which is supposed
* to have the right size (same length as Jacobian's number of columns). */
void
EvaluateTransformJacobianInnerProduct(const TransformJacobianType & jacobian,
const MovingImageDerivativeType & movingImageDerivative,
DerivativeType & imageJacobian) const override;
private:
/** Sample n random numbers from 0..m and add them to the vector. */
void
SampleRandom(const int n, const int m, std::vector<int> & numbers) const;
/** Variables to control random sampling in last dimension. */
bool m_SampleLastDimensionRandomly{ false };
unsigned int m_NumSamplesLastDimension{ 10 };
unsigned int m_NumAdditionalSamplesFixed{};
unsigned int m_ReducedDimensionIndex{};
/** Bool to determine if we want to subtract the mean derivate from the derivative elements. */
bool m_UseZeroAverageDisplacementConstraint{ true };
/** Initial variance in last dimension, used as normalization factor. */
float m_InitialVariance{};
/** GridSize of B-spline transform. */
FixedImageSizeType m_GridSize{};
/** Bool to indicate if the transform used is a stacktransform. Set by elx files. */
bool m_TransformIsStackTransform{ false };
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkVarianceOverLastDimensionImageMetric.hxx"
#endif
#endif // end #ifndef itkVarianceOverLastDimensionImageMetric_h
|