File: itkVarianceOverLastDimensionImageMetric.hxx

package info (click to toggle)
elastix 5.2.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 42,480 kB
  • sloc: cpp: 68,403; lisp: 4,118; python: 1,013; xml: 182; sh: 177; makefile: 33
file content (568 lines) | stat: -rw-r--r-- 20,432 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
/*=========================================================================
 *
 *  Copyright UMC Utrecht and contributors
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *        http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkVarianceOverLastDimensionImageMetric_hxx
#define itkVarianceOverLastDimensionImageMetric_hxx

#include "itkVarianceOverLastDimensionImageMetric.h"
#include "itkMersenneTwisterRandomVariateGenerator.h"
#include <vnl/algo/vnl_matrix_update.h>
#include <numeric>

namespace itk
{

/**
 * ******************* Constructor *******************
 */

template <class TFixedImage, class TMovingImage>
VarianceOverLastDimensionImageMetric<TFixedImage, TMovingImage>::VarianceOverLastDimensionImageMetric()
{
  this->SetUseImageSampler(true);
  this->SetUseFixedImageLimiter(false);
  this->SetUseMovingImageLimiter(false);

} // end Constructor


/**
 * ******************* Initialize *******************
 */

template <class TFixedImage, class TMovingImage>
void
VarianceOverLastDimensionImageMetric<TFixedImage, TMovingImage>::Initialize()
{
  /** Initialize transform, interpolator, etc. */
  Superclass::Initialize();

  /** Retrieve slowest varying dimension and its size. */
  const unsigned int lastDim = FixedImageDimension - 1;
  const unsigned int lastDimSize = this->GetFixedImage()->GetLargestPossibleRegion().GetSize(lastDim);

  /** Check num last samples. */
  if (m_NumSamplesLastDimension > lastDimSize)
  {
    m_NumSamplesLastDimension = lastDimSize;
  }

  /** Compute variance over last dimension for complete image to use as normalization factor. */
  ImageLinearConstIteratorWithIndex<MovingImageType> it(this->GetMovingImage(),
                                                        this->GetMovingImage()->GetLargestPossibleRegion());
  it.SetDirection(lastDim);
  it.GoToBegin();

  float sumvar = 0.0;
  int   num = 0;
  while (!it.IsAtEnd())
  {
    /** Compute sum of values and sum of squared values. */
    float        sum = 0.0;
    float        sumsq = 0.0;
    unsigned int numlast = 0;
    while (!it.IsAtEndOfLine())
    {
      float value = it.Get();
      sum += value;
      sumsq += value * value;
      ++numlast;
      ++it;
    }

    /** Compute expected value (mean) and variance. */
    float expectedValue = sum / static_cast<float>(numlast);
    sumvar += sumsq / static_cast<float>(numlast) - expectedValue * expectedValue;
    ++num;

    it.NextLine();
  }

  /** Compute average variance. */
  if (sumvar == 0)
  {
    m_InitialVariance = 1.0f;
  }
  else
  {
    m_InitialVariance = sumvar / static_cast<float>(num);
  }

} // end Initialize()


/**
 * ******************* PrintSelf *******************
 */

template <class TFixedImage, class TMovingImage>
void
VarianceOverLastDimensionImageMetric<TFixedImage, TMovingImage>::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);
} // end PrintSelf()


/**
 * ******************* SampleRandom *******************
 */

template <class TFixedImage, class TMovingImage>
void
VarianceOverLastDimensionImageMetric<TFixedImage, TMovingImage>::SampleRandom(const int          n,
                                                                              const int          m,
                                                                              std::vector<int> & numbers) const
{
  /** Empty list of last dimension positions. */
  numbers.clear();
  numbers.reserve(m_NumAdditionalSamplesFixed + n);

  /** Initialize random number generator. */
  Statistics::MersenneTwisterRandomVariateGenerator::Pointer randomGenerator =
    Statistics::MersenneTwisterRandomVariateGenerator::GetInstance();

  /** Sample additional at fixed timepoint. */
  for (unsigned int i = 0; i < m_NumAdditionalSamplesFixed; ++i)
  {
    numbers.push_back(m_ReducedDimensionIndex);
  }

  /** Get n random samples. */
  for (int i = 0; i < n; ++i)
  {
    int randomNum = 0;
    do
    {
      randomNum = static_cast<int>(randomGenerator->GetVariateWithClosedRange(m));
    } while (find(numbers.begin(), numbers.end(), randomNum) != numbers.end());
    numbers.push_back(randomNum);
  }
} // end SampleRandom()


/**
 * *************** EvaluateTransformJacobianInnerProduct ****************
 */

template <class TFixedImage, class TMovingImage>
void
VarianceOverLastDimensionImageMetric<TFixedImage, TMovingImage>::EvaluateTransformJacobianInnerProduct(
  const TransformJacobianType &     jacobian,
  const MovingImageDerivativeType & movingImageDerivative,
  DerivativeType &                  imageJacobian) const
{
  ImplementationDetails::EvaluateInnerProduct(jacobian, movingImageDerivative, imageJacobian);

} // end EvaluateTransformJacobianInnerProduct()


/**
 * ******************* GetValue *******************
 */

template <class TFixedImage, class TMovingImage>
auto
VarianceOverLastDimensionImageMetric<TFixedImage, TMovingImage>::GetValue(
  const TransformParametersType & parameters) const -> MeasureType
{
  itkDebugMacro("GetValue( " << parameters << " ) ");

  /** Initialize some variables */
  Superclass::m_NumberOfPixelsCounted = 0;
  MeasureType measure{};

  /** Call non-thread-safe stuff, such as:
   *   this->SetTransformParameters( parameters );
   *   this->GetImageSampler()->Update();
   * Because of these calls GetValueAndDerivative itself is not thread-safe,
   * so cannot be called multiple times simultaneously.
   * This is however needed in the CombinationImageToImageMetric.
   * In that case, you need to:
   * - switch the use of this function to on, using m_UseMetricSingleThreaded = true
   * - call BeforeThreadedGetValueAndDerivative once (single-threaded) before
   *   calling GetValueAndDerivative
   * - switch the use of this function to off, using m_UseMetricSingleThreaded = false
   * - Now you can call GetValueAndDerivative multi-threaded.
   */
  this->BeforeThreadedGetValueAndDerivative(parameters);

  /** Get a handle to the sample container. */
  ImageSampleContainerPointer sampleContainer = this->GetImageSampler()->GetOutput();

  /** Retrieve slowest varying dimension and its size. */
  const unsigned int lastDim = FixedImageDimension - 1;
  const unsigned int lastDimSize = this->GetFixedImage()->GetLargestPossibleRegion().GetSize(lastDim);
  const unsigned int numLastDimSamples = m_NumSamplesLastDimension;

  /** Vector containing last dimension positions to use:
   * initialize on all positions when random sampling turned off.
   */
  std::vector<int> lastDimPositions;
  if (!m_SampleLastDimensionRandomly)
  {
    lastDimPositions.reserve(lastDimSize);

    for (unsigned int i = 0; i < lastDimSize; ++i)
    {
      lastDimPositions.push_back(i);
    }
  }

  /** Loop over the fixed image samples to calculate the variance over time for every sample position. */
  for (const auto & fixedImageSample : *sampleContainer)
  {
    /** Read fixed coordinates. */
    FixedImagePointType fixedPoint = fixedImageSample.m_ImageCoordinates;

    /** Determine random last dimension positions if needed. */
    if (m_SampleLastDimensionRandomly)
    {
      this->SampleRandom(numLastDimSamples, lastDimSize, lastDimPositions);
    }

    /** Transform sampled point to voxel coordinates. */
    auto voxelCoord =
      this->GetFixedImage()->template TransformPhysicalPointToContinuousIndex<CoordinateRepresentationType>(fixedPoint);

    /** Loop over the slowest varying dimension. */
    float              sumValues = 0.0;
    float              sumValuesSquared = 0.0;
    unsigned int       numSamplesOk = 0;
    const unsigned int realNumLastDimPositions = lastDimPositions.size();
    for (unsigned int d = 0; d < realNumLastDimPositions; ++d)
    {
      /** Initialize some variables. */
      RealType movingImageValue;

      /** Set fixed point's last dimension to lastDimPosition. */
      voxelCoord[lastDim] = lastDimPositions[d];

      /** Transform sampled point back to world coordinates. */
      this->GetFixedImage()->TransformContinuousIndexToPhysicalPoint(voxelCoord, fixedPoint);

      /** Transform point. */
      const MovingImagePointType mappedPoint = this->TransformPoint(fixedPoint);

      /** Check if the point is inside the moving mask. */
      bool sampleOk = this->IsInsideMovingMask(mappedPoint);

      /** Compute the moving image value and check if the point is
       * inside the moving image buffer.
       */
      if (sampleOk)
      {
        sampleOk = this->Superclass::EvaluateMovingImageValueAndDerivative(mappedPoint, movingImageValue, nullptr);
      }

      if (sampleOk)
      {
        ++numSamplesOk;
        sumValues += movingImageValue;
        sumValuesSquared += movingImageValue * movingImageValue;
      } // end if sampleOk
    }   // end for loop over last dimension

    if (numSamplesOk > 0)
    {
      Superclass::m_NumberOfPixelsCounted++;

      /** Add this variance to the variance sum. */
      const float expectedValue = sumValues / static_cast<float>(numSamplesOk);
      const float expectedSquaredValue = sumValuesSquared / static_cast<float>(numSamplesOk);
      measure += expectedSquaredValue - expectedValue * expectedValue;
    }

  } // end for loop over the image sample container

  /** Check if enough samples were valid. */
  this->CheckNumberOfSamples(sampleContainer->Size(), Superclass::m_NumberOfPixelsCounted);

  /** Compute average over variances. */
  measure /= static_cast<float>(Superclass::m_NumberOfPixelsCounted);
  /** Normalize with initial variance. */
  measure /= m_InitialVariance;

  /** Return the mean squares measure value. */
  return measure;

} // end GetValue()


/**
 * ******************* GetDerivative *******************
 */

template <class TFixedImage, class TMovingImage>
void
VarianceOverLastDimensionImageMetric<TFixedImage, TMovingImage>::GetDerivative(
  const TransformParametersType & parameters,
  DerivativeType &                derivative) const
{
  /** When the derivative is calculated, all information for calculating
   * the metric value is available. It does not cost anything to calculate
   * the metric value now. Therefore, we have chosen to only implement the
   * GetValueAndDerivative(), supplying it with a dummy value variable.
   */
  MeasureType dummyvalue{};
  this->GetValueAndDerivative(parameters, dummyvalue, derivative);

} // end GetDerivative()


/**
 * ******************* GetValueAndDerivative *******************
 */

template <class TFixedImage, class TMovingImage>
void
VarianceOverLastDimensionImageMetric<TFixedImage, TMovingImage>::GetValueAndDerivative(
  const TransformParametersType & parameters,
  MeasureType &                   value,
  DerivativeType &                derivative) const
{
  itkDebugMacro("GetValueAndDerivative( " << parameters << " ) ");

  /** Initialize some variables */
  Superclass::m_NumberOfPixelsCounted = 0;
  MeasureType measure{};
  derivative.set_size(this->GetNumberOfParameters());
  derivative.Fill(DerivativeValueType{});

  /** Call non-thread-safe stuff, such as:
   *   this->SetTransformParameters( parameters );
   *   this->GetImageSampler()->Update();
   * Because of these calls GetValueAndDerivative itself is not thread-safe,
   * so cannot be called multiple times simultaneously.
   * This is however needed in the CombinationImageToImageMetric.
   * In that case, you need to:
   * - switch the use of this function to on, using m_UseMetricSingleThreaded = true
   * - call BeforeThreadedGetValueAndDerivative once (single-threaded) before
   *   calling GetValueAndDerivative
   * - switch the use of this function to off, using m_UseMetricSingleThreaded = false
   * - Now you can call GetValueAndDerivative multi-threaded.
   */
  this->BeforeThreadedGetValueAndDerivative(parameters);

  /** Get a handle to the sample container. */
  ImageSampleContainerPointer sampleContainer = this->GetImageSampler()->GetOutput();

  /** Retrieve slowest varying dimension and its size. */
  const unsigned int lastDim = FixedImageDimension - 1;
  const unsigned int lastDimSize = this->GetFixedImage()->GetLargestPossibleRegion().GetSize(lastDim);

  /** Vector containing last dimension positions to use:
   * initialize on all positions when random sampling turned off.
   */
  std::vector<int> lastDimPositions;
  if (!m_SampleLastDimensionRandomly)
  {
    lastDimPositions.reserve(lastDimSize);

    for (unsigned int i = 0; i < lastDimSize; ++i)
    {
      lastDimPositions.push_back(i);
    }
  }

  /** Create variables to store intermediate results in. */
  TransformJacobianType jacobian;
  DerivativeType        imageJacobian(Superclass::m_AdvancedTransform->GetNumberOfNonZeroJacobianIndices());

  /** Get real last dim samples. */
  const unsigned int realNumLastDimPositions =
    m_SampleLastDimensionRandomly ? m_NumSamplesLastDimension + m_NumAdditionalSamplesFixed : lastDimSize;

  /** Variable to store and nzjis. */
  std::vector<NonZeroJacobianIndicesType> nzjis(realNumLastDimPositions, NonZeroJacobianIndicesType());

  std::vector<RealType>       MT(realNumLastDimPositions);
  std::vector<DerivativeType> dMTdmu(realNumLastDimPositions);

  /** Loop over the fixed image samples to calculate the variance over time for every sample position. */
  for (const auto & fixedImageSample : *sampleContainer)
  {
    /** Read fixed coordinates. */
    FixedImagePointType fixedPoint = fixedImageSample.m_ImageCoordinates;

    /** Determine random last dimension positions if needed. */
    if (m_SampleLastDimensionRandomly)
    {
      this->SampleRandom(m_NumSamplesLastDimension, lastDimSize, lastDimPositions);
    }

    /** Initialize MT vector. */
    std::fill(MT.begin(), MT.end(), RealType{});

    /** Transform sampled point to voxel coordinates. */
    auto voxelCoord =
      this->GetFixedImage()->template TransformPhysicalPointToContinuousIndex<CoordinateRepresentationType>(fixedPoint);

    /** Loop over the slowest varying dimension. */
    float        sumValues = 0.0;
    float        sumValuesSquared = 0.0;
    unsigned int numSamplesOk = 0;

    /** First loop over t: compute M(T(x,t)), dM(T(x,t))/dmu, nzji and store. */
    for (unsigned int d = 0; d < realNumLastDimPositions; ++d)
    {
      /** Initialize some variables. */
      RealType                  movingImageValue;
      MovingImageDerivativeType movingImageDerivative;

      /** Set fixed point's last dimension to lastDimPosition. */
      voxelCoord[lastDim] = lastDimPositions[d];
      /** Transform sampled point back to world coordinates. */
      this->GetFixedImage()->TransformContinuousIndexToPhysicalPoint(voxelCoord, fixedPoint);
      /** Transform point. */
      const MovingImagePointType mappedPoint = this->TransformPoint(fixedPoint);

      /** Check if the point is inside the moving mask. */
      bool sampleOk = this->IsInsideMovingMask(mappedPoint);

      /** Compute the moving image value and check if the point is
       * inside the moving image buffer. */
      if (sampleOk)
      {
        sampleOk = this->Superclass::EvaluateMovingImageValueAndDerivative(
          mappedPoint, movingImageValue, &movingImageDerivative);
      }

      if (sampleOk)
      {
        /** Update value terms **/
        ++numSamplesOk;
        sumValues += movingImageValue;
        sumValuesSquared += movingImageValue * movingImageValue;

        /** Get the TransformJacobian dT/dmu. */
        this->EvaluateTransformJacobian(fixedPoint, jacobian, nzjis[d]);

        /** Compute the innerproduct (dM/dx)^T (dT/dmu). */
        this->EvaluateTransformJacobianInnerProduct(jacobian, movingImageDerivative, imageJacobian);

        /** Store values. */
        MT[d] = movingImageValue;
        dMTdmu[d] = imageJacobian;
      }
      else
      {
        dMTdmu[d] = DerivativeType(Superclass::m_AdvancedTransform->GetNumberOfNonZeroJacobianIndices());
        dMTdmu[d].Fill(DerivativeValueType{});
        nzjis[d] = NonZeroJacobianIndicesType(Superclass::m_AdvancedTransform->GetNumberOfNonZeroJacobianIndices(), 0);
      } // end if sampleOk
    }

    if (numSamplesOk > 0)
    {
      Superclass::m_NumberOfPixelsCounted++;

      /** Compute average intensity value. */
      const float expectedValue = sumValues / static_cast<float>(numSamplesOk);
      /** Add this variance to the variance sum. */
      const float expectedSquaredValue = sumValuesSquared / static_cast<float>(numSamplesOk);
      measure += expectedSquaredValue - expectedValue * expectedValue;

      /** Second loop over t: update derivative. */
      for (unsigned int d = 0; d < realNumLastDimPositions; ++d)
      {
        for (unsigned int j = 0; j < nzjis[d].size(); ++j)
        {
          derivative[nzjis[d][j]] += (2.0 * (MT[d] - expectedValue) * dMTdmu[d][j]) / static_cast<float>(numSamplesOk);
        }
      }
    }
  } // end for loop over the image sample container

  /** Check if enough samples were valid. */
  this->CheckNumberOfSamples(sampleContainer->Size(), Superclass::m_NumberOfPixelsCounted);

  /** Compute average over variances and normalize with initial variance. */
  measure /= static_cast<float>(Superclass::m_NumberOfPixelsCounted * m_InitialVariance);
  derivative /= static_cast<float>(Superclass::m_NumberOfPixelsCounted * m_InitialVariance);

  /** Subtract mean from derivative elements. */
  if (m_UseZeroAverageDisplacementConstraint)
  {
    if (!m_TransformIsStackTransform)
    {
      /** Update derivative per dimension.
       * Parameters are ordered xxxxxxx yyyyyyy zzzzzzz ttttttt and
       * per dimension xyz.
       */
      const unsigned int lastDimGridSize = m_GridSize[lastDim];
      const unsigned int numParametersPerDimension = this->GetNumberOfParameters() / MovingImageDimension;
      const unsigned int numControlPointsPerDimension = numParametersPerDimension / lastDimGridSize;
      DerivativeType     mean(numControlPointsPerDimension);
      for (unsigned int d = 0; d < MovingImageDimension; ++d)
      {
        /** Compute mean per dimension. */
        mean.Fill(0.0);
        const unsigned int starti = numParametersPerDimension * d;
        for (unsigned int i = starti; i < starti + numParametersPerDimension; ++i)
        {
          mean[i % numControlPointsPerDimension] += derivative[i];
        }
        mean /= static_cast<double>(lastDimGridSize);

        /** Update derivative for every control point per dimension. */
        for (unsigned int i = starti; i < starti + numParametersPerDimension; ++i)
        {
          derivative[i] -= mean[i % numControlPointsPerDimension];
        }
      }
    }
    else
    {
      /** Update derivative per dimension.
       * Parameters are ordered x0x0x0y0y0y0z0z0z0x1x1x1y1y1y1z1z1z1 with
       * the number the time point index.
       */
      const unsigned int numParametersPerLastDimension = this->GetNumberOfParameters() / lastDimSize;
      DerivativeType     mean(numParametersPerLastDimension, 0.0);

      /** Compute mean per control point. */
      for (unsigned int t = 0; t < lastDimSize; ++t)
      {
        const unsigned int startc = numParametersPerLastDimension * t;
        for (unsigned int c = startc; c < startc + numParametersPerLastDimension; ++c)
        {
          mean[c % numParametersPerLastDimension] += derivative[c];
        }
      }
      mean /= static_cast<double>(lastDimSize);

      /** Update derivative per control point. */
      for (unsigned int t = 0; t < lastDimSize; ++t)
      {
        const unsigned int startc = numParametersPerLastDimension * t;
        for (unsigned int c = startc; c < startc + numParametersPerLastDimension; ++c)
        {
          derivative[c] -= mean[c % numParametersPerLastDimension];
        }
      }
    }
  }

  /** Return the measure value. */
  value = measure;

} // end GetValueAndDerivative()


} // end namespace itk

#endif // end #ifndef _itkVarianceOverLastDimensionImageMetric_hxx