1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
|
/*=========================================================================
*
* Copyright UMC Utrecht and contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkVarianceOverLastDimensionImageMetric_hxx
#define itkVarianceOverLastDimensionImageMetric_hxx
#include "itkVarianceOverLastDimensionImageMetric.h"
#include "itkMersenneTwisterRandomVariateGenerator.h"
#include <vnl/algo/vnl_matrix_update.h>
#include <numeric>
namespace itk
{
/**
* ******************* Constructor *******************
*/
template <class TFixedImage, class TMovingImage>
VarianceOverLastDimensionImageMetric<TFixedImage, TMovingImage>::VarianceOverLastDimensionImageMetric()
{
this->SetUseImageSampler(true);
this->SetUseFixedImageLimiter(false);
this->SetUseMovingImageLimiter(false);
} // end Constructor
/**
* ******************* Initialize *******************
*/
template <class TFixedImage, class TMovingImage>
void
VarianceOverLastDimensionImageMetric<TFixedImage, TMovingImage>::Initialize()
{
/** Initialize transform, interpolator, etc. */
Superclass::Initialize();
/** Retrieve slowest varying dimension and its size. */
const unsigned int lastDim = FixedImageDimension - 1;
const unsigned int lastDimSize = this->GetFixedImage()->GetLargestPossibleRegion().GetSize(lastDim);
/** Check num last samples. */
if (m_NumSamplesLastDimension > lastDimSize)
{
m_NumSamplesLastDimension = lastDimSize;
}
/** Compute variance over last dimension for complete image to use as normalization factor. */
ImageLinearConstIteratorWithIndex<MovingImageType> it(this->GetMovingImage(),
this->GetMovingImage()->GetLargestPossibleRegion());
it.SetDirection(lastDim);
it.GoToBegin();
float sumvar = 0.0;
int num = 0;
while (!it.IsAtEnd())
{
/** Compute sum of values and sum of squared values. */
float sum = 0.0;
float sumsq = 0.0;
unsigned int numlast = 0;
while (!it.IsAtEndOfLine())
{
float value = it.Get();
sum += value;
sumsq += value * value;
++numlast;
++it;
}
/** Compute expected value (mean) and variance. */
float expectedValue = sum / static_cast<float>(numlast);
sumvar += sumsq / static_cast<float>(numlast) - expectedValue * expectedValue;
++num;
it.NextLine();
}
/** Compute average variance. */
if (sumvar == 0)
{
m_InitialVariance = 1.0f;
}
else
{
m_InitialVariance = sumvar / static_cast<float>(num);
}
} // end Initialize()
/**
* ******************* PrintSelf *******************
*/
template <class TFixedImage, class TMovingImage>
void
VarianceOverLastDimensionImageMetric<TFixedImage, TMovingImage>::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
} // end PrintSelf()
/**
* ******************* SampleRandom *******************
*/
template <class TFixedImage, class TMovingImage>
void
VarianceOverLastDimensionImageMetric<TFixedImage, TMovingImage>::SampleRandom(const int n,
const int m,
std::vector<int> & numbers) const
{
/** Empty list of last dimension positions. */
numbers.clear();
numbers.reserve(m_NumAdditionalSamplesFixed + n);
/** Initialize random number generator. */
Statistics::MersenneTwisterRandomVariateGenerator::Pointer randomGenerator =
Statistics::MersenneTwisterRandomVariateGenerator::GetInstance();
/** Sample additional at fixed timepoint. */
for (unsigned int i = 0; i < m_NumAdditionalSamplesFixed; ++i)
{
numbers.push_back(m_ReducedDimensionIndex);
}
/** Get n random samples. */
for (int i = 0; i < n; ++i)
{
int randomNum = 0;
do
{
randomNum = static_cast<int>(randomGenerator->GetVariateWithClosedRange(m));
} while (find(numbers.begin(), numbers.end(), randomNum) != numbers.end());
numbers.push_back(randomNum);
}
} // end SampleRandom()
/**
* *************** EvaluateTransformJacobianInnerProduct ****************
*/
template <class TFixedImage, class TMovingImage>
void
VarianceOverLastDimensionImageMetric<TFixedImage, TMovingImage>::EvaluateTransformJacobianInnerProduct(
const TransformJacobianType & jacobian,
const MovingImageDerivativeType & movingImageDerivative,
DerivativeType & imageJacobian) const
{
ImplementationDetails::EvaluateInnerProduct(jacobian, movingImageDerivative, imageJacobian);
} // end EvaluateTransformJacobianInnerProduct()
/**
* ******************* GetValue *******************
*/
template <class TFixedImage, class TMovingImage>
auto
VarianceOverLastDimensionImageMetric<TFixedImage, TMovingImage>::GetValue(
const TransformParametersType & parameters) const -> MeasureType
{
itkDebugMacro("GetValue( " << parameters << " ) ");
/** Initialize some variables */
Superclass::m_NumberOfPixelsCounted = 0;
MeasureType measure{};
/** Call non-thread-safe stuff, such as:
* this->SetTransformParameters( parameters );
* this->GetImageSampler()->Update();
* Because of these calls GetValueAndDerivative itself is not thread-safe,
* so cannot be called multiple times simultaneously.
* This is however needed in the CombinationImageToImageMetric.
* In that case, you need to:
* - switch the use of this function to on, using m_UseMetricSingleThreaded = true
* - call BeforeThreadedGetValueAndDerivative once (single-threaded) before
* calling GetValueAndDerivative
* - switch the use of this function to off, using m_UseMetricSingleThreaded = false
* - Now you can call GetValueAndDerivative multi-threaded.
*/
this->BeforeThreadedGetValueAndDerivative(parameters);
/** Get a handle to the sample container. */
ImageSampleContainerPointer sampleContainer = this->GetImageSampler()->GetOutput();
/** Retrieve slowest varying dimension and its size. */
const unsigned int lastDim = FixedImageDimension - 1;
const unsigned int lastDimSize = this->GetFixedImage()->GetLargestPossibleRegion().GetSize(lastDim);
const unsigned int numLastDimSamples = m_NumSamplesLastDimension;
/** Vector containing last dimension positions to use:
* initialize on all positions when random sampling turned off.
*/
std::vector<int> lastDimPositions;
if (!m_SampleLastDimensionRandomly)
{
lastDimPositions.reserve(lastDimSize);
for (unsigned int i = 0; i < lastDimSize; ++i)
{
lastDimPositions.push_back(i);
}
}
/** Loop over the fixed image samples to calculate the variance over time for every sample position. */
for (const auto & fixedImageSample : *sampleContainer)
{
/** Read fixed coordinates. */
FixedImagePointType fixedPoint = fixedImageSample.m_ImageCoordinates;
/** Determine random last dimension positions if needed. */
if (m_SampleLastDimensionRandomly)
{
this->SampleRandom(numLastDimSamples, lastDimSize, lastDimPositions);
}
/** Transform sampled point to voxel coordinates. */
auto voxelCoord =
this->GetFixedImage()->template TransformPhysicalPointToContinuousIndex<CoordinateRepresentationType>(fixedPoint);
/** Loop over the slowest varying dimension. */
float sumValues = 0.0;
float sumValuesSquared = 0.0;
unsigned int numSamplesOk = 0;
const unsigned int realNumLastDimPositions = lastDimPositions.size();
for (unsigned int d = 0; d < realNumLastDimPositions; ++d)
{
/** Initialize some variables. */
RealType movingImageValue;
/** Set fixed point's last dimension to lastDimPosition. */
voxelCoord[lastDim] = lastDimPositions[d];
/** Transform sampled point back to world coordinates. */
this->GetFixedImage()->TransformContinuousIndexToPhysicalPoint(voxelCoord, fixedPoint);
/** Transform point. */
const MovingImagePointType mappedPoint = this->TransformPoint(fixedPoint);
/** Check if the point is inside the moving mask. */
bool sampleOk = this->IsInsideMovingMask(mappedPoint);
/** Compute the moving image value and check if the point is
* inside the moving image buffer.
*/
if (sampleOk)
{
sampleOk = this->Superclass::EvaluateMovingImageValueAndDerivative(mappedPoint, movingImageValue, nullptr);
}
if (sampleOk)
{
++numSamplesOk;
sumValues += movingImageValue;
sumValuesSquared += movingImageValue * movingImageValue;
} // end if sampleOk
} // end for loop over last dimension
if (numSamplesOk > 0)
{
Superclass::m_NumberOfPixelsCounted++;
/** Add this variance to the variance sum. */
const float expectedValue = sumValues / static_cast<float>(numSamplesOk);
const float expectedSquaredValue = sumValuesSquared / static_cast<float>(numSamplesOk);
measure += expectedSquaredValue - expectedValue * expectedValue;
}
} // end for loop over the image sample container
/** Check if enough samples were valid. */
this->CheckNumberOfSamples(sampleContainer->Size(), Superclass::m_NumberOfPixelsCounted);
/** Compute average over variances. */
measure /= static_cast<float>(Superclass::m_NumberOfPixelsCounted);
/** Normalize with initial variance. */
measure /= m_InitialVariance;
/** Return the mean squares measure value. */
return measure;
} // end GetValue()
/**
* ******************* GetDerivative *******************
*/
template <class TFixedImage, class TMovingImage>
void
VarianceOverLastDimensionImageMetric<TFixedImage, TMovingImage>::GetDerivative(
const TransformParametersType & parameters,
DerivativeType & derivative) const
{
/** When the derivative is calculated, all information for calculating
* the metric value is available. It does not cost anything to calculate
* the metric value now. Therefore, we have chosen to only implement the
* GetValueAndDerivative(), supplying it with a dummy value variable.
*/
MeasureType dummyvalue{};
this->GetValueAndDerivative(parameters, dummyvalue, derivative);
} // end GetDerivative()
/**
* ******************* GetValueAndDerivative *******************
*/
template <class TFixedImage, class TMovingImage>
void
VarianceOverLastDimensionImageMetric<TFixedImage, TMovingImage>::GetValueAndDerivative(
const TransformParametersType & parameters,
MeasureType & value,
DerivativeType & derivative) const
{
itkDebugMacro("GetValueAndDerivative( " << parameters << " ) ");
/** Initialize some variables */
Superclass::m_NumberOfPixelsCounted = 0;
MeasureType measure{};
derivative.set_size(this->GetNumberOfParameters());
derivative.Fill(DerivativeValueType{});
/** Call non-thread-safe stuff, such as:
* this->SetTransformParameters( parameters );
* this->GetImageSampler()->Update();
* Because of these calls GetValueAndDerivative itself is not thread-safe,
* so cannot be called multiple times simultaneously.
* This is however needed in the CombinationImageToImageMetric.
* In that case, you need to:
* - switch the use of this function to on, using m_UseMetricSingleThreaded = true
* - call BeforeThreadedGetValueAndDerivative once (single-threaded) before
* calling GetValueAndDerivative
* - switch the use of this function to off, using m_UseMetricSingleThreaded = false
* - Now you can call GetValueAndDerivative multi-threaded.
*/
this->BeforeThreadedGetValueAndDerivative(parameters);
/** Get a handle to the sample container. */
ImageSampleContainerPointer sampleContainer = this->GetImageSampler()->GetOutput();
/** Retrieve slowest varying dimension and its size. */
const unsigned int lastDim = FixedImageDimension - 1;
const unsigned int lastDimSize = this->GetFixedImage()->GetLargestPossibleRegion().GetSize(lastDim);
/** Vector containing last dimension positions to use:
* initialize on all positions when random sampling turned off.
*/
std::vector<int> lastDimPositions;
if (!m_SampleLastDimensionRandomly)
{
lastDimPositions.reserve(lastDimSize);
for (unsigned int i = 0; i < lastDimSize; ++i)
{
lastDimPositions.push_back(i);
}
}
/** Create variables to store intermediate results in. */
TransformJacobianType jacobian;
DerivativeType imageJacobian(Superclass::m_AdvancedTransform->GetNumberOfNonZeroJacobianIndices());
/** Get real last dim samples. */
const unsigned int realNumLastDimPositions =
m_SampleLastDimensionRandomly ? m_NumSamplesLastDimension + m_NumAdditionalSamplesFixed : lastDimSize;
/** Variable to store and nzjis. */
std::vector<NonZeroJacobianIndicesType> nzjis(realNumLastDimPositions, NonZeroJacobianIndicesType());
std::vector<RealType> MT(realNumLastDimPositions);
std::vector<DerivativeType> dMTdmu(realNumLastDimPositions);
/** Loop over the fixed image samples to calculate the variance over time for every sample position. */
for (const auto & fixedImageSample : *sampleContainer)
{
/** Read fixed coordinates. */
FixedImagePointType fixedPoint = fixedImageSample.m_ImageCoordinates;
/** Determine random last dimension positions if needed. */
if (m_SampleLastDimensionRandomly)
{
this->SampleRandom(m_NumSamplesLastDimension, lastDimSize, lastDimPositions);
}
/** Initialize MT vector. */
std::fill(MT.begin(), MT.end(), RealType{});
/** Transform sampled point to voxel coordinates. */
auto voxelCoord =
this->GetFixedImage()->template TransformPhysicalPointToContinuousIndex<CoordinateRepresentationType>(fixedPoint);
/** Loop over the slowest varying dimension. */
float sumValues = 0.0;
float sumValuesSquared = 0.0;
unsigned int numSamplesOk = 0;
/** First loop over t: compute M(T(x,t)), dM(T(x,t))/dmu, nzji and store. */
for (unsigned int d = 0; d < realNumLastDimPositions; ++d)
{
/** Initialize some variables. */
RealType movingImageValue;
MovingImageDerivativeType movingImageDerivative;
/** Set fixed point's last dimension to lastDimPosition. */
voxelCoord[lastDim] = lastDimPositions[d];
/** Transform sampled point back to world coordinates. */
this->GetFixedImage()->TransformContinuousIndexToPhysicalPoint(voxelCoord, fixedPoint);
/** Transform point. */
const MovingImagePointType mappedPoint = this->TransformPoint(fixedPoint);
/** Check if the point is inside the moving mask. */
bool sampleOk = this->IsInsideMovingMask(mappedPoint);
/** Compute the moving image value and check if the point is
* inside the moving image buffer. */
if (sampleOk)
{
sampleOk = this->Superclass::EvaluateMovingImageValueAndDerivative(
mappedPoint, movingImageValue, &movingImageDerivative);
}
if (sampleOk)
{
/** Update value terms **/
++numSamplesOk;
sumValues += movingImageValue;
sumValuesSquared += movingImageValue * movingImageValue;
/** Get the TransformJacobian dT/dmu. */
this->EvaluateTransformJacobian(fixedPoint, jacobian, nzjis[d]);
/** Compute the innerproduct (dM/dx)^T (dT/dmu). */
this->EvaluateTransformJacobianInnerProduct(jacobian, movingImageDerivative, imageJacobian);
/** Store values. */
MT[d] = movingImageValue;
dMTdmu[d] = imageJacobian;
}
else
{
dMTdmu[d] = DerivativeType(Superclass::m_AdvancedTransform->GetNumberOfNonZeroJacobianIndices());
dMTdmu[d].Fill(DerivativeValueType{});
nzjis[d] = NonZeroJacobianIndicesType(Superclass::m_AdvancedTransform->GetNumberOfNonZeroJacobianIndices(), 0);
} // end if sampleOk
}
if (numSamplesOk > 0)
{
Superclass::m_NumberOfPixelsCounted++;
/** Compute average intensity value. */
const float expectedValue = sumValues / static_cast<float>(numSamplesOk);
/** Add this variance to the variance sum. */
const float expectedSquaredValue = sumValuesSquared / static_cast<float>(numSamplesOk);
measure += expectedSquaredValue - expectedValue * expectedValue;
/** Second loop over t: update derivative. */
for (unsigned int d = 0; d < realNumLastDimPositions; ++d)
{
for (unsigned int j = 0; j < nzjis[d].size(); ++j)
{
derivative[nzjis[d][j]] += (2.0 * (MT[d] - expectedValue) * dMTdmu[d][j]) / static_cast<float>(numSamplesOk);
}
}
}
} // end for loop over the image sample container
/** Check if enough samples were valid. */
this->CheckNumberOfSamples(sampleContainer->Size(), Superclass::m_NumberOfPixelsCounted);
/** Compute average over variances and normalize with initial variance. */
measure /= static_cast<float>(Superclass::m_NumberOfPixelsCounted * m_InitialVariance);
derivative /= static_cast<float>(Superclass::m_NumberOfPixelsCounted * m_InitialVariance);
/** Subtract mean from derivative elements. */
if (m_UseZeroAverageDisplacementConstraint)
{
if (!m_TransformIsStackTransform)
{
/** Update derivative per dimension.
* Parameters are ordered xxxxxxx yyyyyyy zzzzzzz ttttttt and
* per dimension xyz.
*/
const unsigned int lastDimGridSize = m_GridSize[lastDim];
const unsigned int numParametersPerDimension = this->GetNumberOfParameters() / MovingImageDimension;
const unsigned int numControlPointsPerDimension = numParametersPerDimension / lastDimGridSize;
DerivativeType mean(numControlPointsPerDimension);
for (unsigned int d = 0; d < MovingImageDimension; ++d)
{
/** Compute mean per dimension. */
mean.Fill(0.0);
const unsigned int starti = numParametersPerDimension * d;
for (unsigned int i = starti; i < starti + numParametersPerDimension; ++i)
{
mean[i % numControlPointsPerDimension] += derivative[i];
}
mean /= static_cast<double>(lastDimGridSize);
/** Update derivative for every control point per dimension. */
for (unsigned int i = starti; i < starti + numParametersPerDimension; ++i)
{
derivative[i] -= mean[i % numControlPointsPerDimension];
}
}
}
else
{
/** Update derivative per dimension.
* Parameters are ordered x0x0x0y0y0y0z0z0z0x1x1x1y1y1y1z1z1z1 with
* the number the time point index.
*/
const unsigned int numParametersPerLastDimension = this->GetNumberOfParameters() / lastDimSize;
DerivativeType mean(numParametersPerLastDimension, 0.0);
/** Compute mean per control point. */
for (unsigned int t = 0; t < lastDimSize; ++t)
{
const unsigned int startc = numParametersPerLastDimension * t;
for (unsigned int c = startc; c < startc + numParametersPerLastDimension; ++c)
{
mean[c % numParametersPerLastDimension] += derivative[c];
}
}
mean /= static_cast<double>(lastDimSize);
/** Update derivative per control point. */
for (unsigned int t = 0; t < lastDimSize; ++t)
{
const unsigned int startc = numParametersPerLastDimension * t;
for (unsigned int c = startc; c < startc + numParametersPerLastDimension; ++c)
{
derivative[c] -= mean[c % numParametersPerLastDimension];
}
}
}
}
/** Return the measure value. */
value = measure;
} // end GetValueAndDerivative()
} // end namespace itk
#endif // end #ifndef _itkVarianceOverLastDimensionImageMetric_hxx
|