1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
|
/*=========================================================================
*
* Copyright UMC Utrecht and contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef elxAdaGrad_hxx
#define elxAdaGrad_hxx
#include "elxAdaGrad.h"
#include <itkDeref.h>
#include <cmath> // For abs.
#include <iomanip>
#include <string>
#include <vector>
#include <sstream>
#include <algorithm>
#include <utility>
#include "itkAdvancedImageToImageMetric.h"
#include "itkTimeProbe.h"
namespace elastix
{
/**
* ********************** Constructor ***********************
*/
template <class TElastix>
AdaGrad<TElastix>::AdaGrad()
{
this->m_MaximumNumberOfSamplingAttempts = 0;
this->m_CurrentNumberOfSamplingAttempts = 0;
this->m_PreviousErrorAtIteration = 0;
this->m_AutomaticParameterEstimationDone = false;
this->m_AutomaticParameterEstimation = false;
this->m_MaximumStepLength = 1.0;
this->m_MaximumStepLengthRatio = 1.0;
this->m_RegularizationKappa = 0.8;
this->m_ConditionNumber = 2.0;
this->m_NoiseFactor = 1.0;
this->m_NumberOfGradientMeasurements = 0;
this->m_NumberOfJacobianMeasurements = 0;
this->m_NumberOfSamplesForPrecondition = 0;
this->m_NumberOfSamplesForNoiseCompensationFactor = 0;
this->m_NumberOfSpatialSamples = 5000;
this->m_SigmoidScaleFactor = 0.1;
this->m_GlobalStepSize = 0;
this->m_RandomGenerator = RandomGeneratorType::GetInstance();
this->m_AdvancedTransform = nullptr;
this->m_UseNoiseCompensation = true;
} // Constructor
/**
* ***************** BeforeRegistration ***********************
*/
template <class TElastix>
void
AdaGrad<TElastix>::BeforeRegistration()
{
/** Add the target cell "stepsize" to IterationInfo. */
this->AddTargetCellToIterationInfo("2:Metric");
this->AddTargetCellToIterationInfo("3a:Time");
this->AddTargetCellToIterationInfo("3b:StepSize");
this->AddTargetCellToIterationInfo("4a:||Gradient||");
this->AddTargetCellToIterationInfo("4b:||SearchDirection||");
/** Format the metric and stepsize as floats. */
this->GetIterationInfoAt("2:Metric") << std::showpoint << std::fixed;
this->GetIterationInfoAt("3a:Time") << std::showpoint << std::fixed;
this->GetIterationInfoAt("3b:StepSize") << std::showpoint << std::fixed;
this->GetIterationInfoAt("4:||Gradient||") << std::showpoint << std::fixed;
this->GetIterationInfoAt("4b:||SearchDirection||") << std::showpoint << std::fixed;
this->m_SettingsVector.clear();
} // end BeforeRegistration()
/**
* ***************** BeforeEachResolution ***********************
*/
template <class TElastix>
void
AdaGrad<TElastix>::BeforeEachResolution()
{
/** Get the current resolution level. */
unsigned int level = static_cast<unsigned int>(this->m_Registration->GetAsITKBaseType()->GetCurrentLevel());
const unsigned int P = this->GetElastix()->GetElxTransformBase()->GetAsITKBaseType()->GetNumberOfParameters();
const Configuration & configuration = itk::Deref(Superclass2::GetConfiguration());
/** Set the maximumNumberOfIterations. */
SizeValueType maximumNumberOfIterations = 500;
configuration.ReadParameter(
maximumNumberOfIterations, "MaximumNumberOfIterations", this->GetComponentLabel(), level, 0);
this->SetNumberOfIterations(maximumNumberOfIterations);
/** Set the gain parameter A. */
double A = 20.0;
configuration.ReadParameter(A, "SP_A", this->GetComponentLabel(), level, 0);
this->SetParam_A(A);
/** Set the MaximumNumberOfSamplingAttempts. check if needed? */
SizeValueType maximumNumberOfSamplingAttempts = 0;
configuration.ReadParameter(
maximumNumberOfSamplingAttempts, "MaximumNumberOfSamplingAttempts", this->GetComponentLabel(), level, 0);
this->SetMaximumNumberOfSamplingAttempts(maximumNumberOfSamplingAttempts);
if (maximumNumberOfSamplingAttempts > 5)
{
log::warn(
std::ostringstream{} << "\nWARNING: You have set MaximumNumberOfSamplingAttempts to "
<< maximumNumberOfSamplingAttempts << ".\n"
<< " This functionality is known to cause problems (stack overflow) for large values.\n"
<< " If elastix stops or segfaults for no obvious reason, reduce this value.\n"
<< " You may select the RandomSparseMask image sampler to fix mask-related problems.\n");
}
/** Set/Get the initial time. Default: 0.0. Should be >= 0. */
double initialTime = 0.0;
configuration.ReadParameter(initialTime, "SigmoidInitialTime", this->GetComponentLabel(), level, 0);
this->SetInitialTime(initialTime);
/** Set/Get whether the adaptive step size mechanism is desired. Default: true
* NB: the setting is turned off in case of UseRandomSampleRegion == true.
*/
/** Set whether automatic gain estimation is required; default: true. */
this->m_AutomaticParameterEstimation = true;
configuration.ReadParameter(
this->m_AutomaticParameterEstimation, "AutomaticParameterEstimation", this->GetComponentLabel(), level, 0);
std::string stepSizeStrategy = "Adaptive";
configuration.ReadParameter(stepSizeStrategy, "StepSizeStrategy", this->GetComponentLabel(), 0, 0);
this->m_StepSizeStrategy = stepSizeStrategy;
if (this->m_AutomaticParameterEstimation)
{
/** Read user setting. */
configuration.ReadParameter(
this->m_MaximumStepLengthRatio, "MaximumStepLengthRatio", this->GetComponentLabel(), level, 0);
/** Set the maximum step length: the maximum displacement of a voxel in mm.
* Compute default value: mean in-plane spacing of fixed and moving image.
*/
const unsigned int fixdim = std::min((unsigned int)this->GetElastix()->FixedDimension, (unsigned int)2);
const unsigned int movdim = std::min((unsigned int)this->GetElastix()->MovingDimension, (unsigned int)2);
double sum = 0.0;
for (unsigned int d = 0; d < fixdim; ++d)
{
sum += this->GetElastix()->GetFixedImage()->GetSpacing()[d];
}
for (unsigned int d = 0; d < movdim; ++d)
{
sum += this->GetElastix()->GetMovingImage()->GetSpacing()[d];
}
this->m_MaximumStepLength = this->m_MaximumStepLengthRatio * sum / static_cast<double>(fixdim + movdim);
/** Read user setting. */
configuration.ReadParameter(this->m_MaximumStepLength, "MaximumStepLength", this->GetComponentLabel(), level, 0);
/** Number of gradients N to estimate the average magnitudes
* of the exact preconditioned gradient and the approximation error.
*/
this->m_NumberOfGradientMeasurements = 0;
configuration.ReadParameter(
this->m_NumberOfGradientMeasurements, "NumberOfGradientMeasurements", this->GetComponentLabel(), level, 0);
this->m_NumberOfGradientMeasurements =
std::max(static_cast<SizeValueType>(2), this->m_NumberOfGradientMeasurements);
/** Set the number of Jacobian measurements M.
* By default, if nothing specified by the user, M is determined as:
* M = max( 1000, nrofparams );
* This is a rather crude rule of thumb, which seems to work in practice.
*/
this->m_NumberOfJacobianMeasurements = std::max(static_cast<unsigned int>(5000), static_cast<unsigned int>(2 * P));
configuration.ReadParameter(
this->m_NumberOfJacobianMeasurements, "NumberOfJacobianMeasurements", this->GetComponentLabel(), level, 0);
/** Set the NumberOfSpatialSamples. */
unsigned long numberOfSpatialSamples = 5000;
configuration.ReadParameter(numberOfSpatialSamples, "NumberOfSpatialSamples", this->GetComponentLabel(), level, 0);
this->m_NumberOfSpatialSamples = numberOfSpatialSamples;
/** Set the number of samples for precondition matrix computation.
* By default, if nothing specified by the user, M is determined as:
* P = max( 1000, nrofparams );
* This is a rather crude rule of thumb, which seems to work in practice.
*/
this->m_NumberOfSamplesForPrecondition = std::max(static_cast<unsigned int>(1000), static_cast<unsigned int>(P));
configuration.ReadParameter(
this->m_NumberOfSamplesForPrecondition, "NumberOfSamplesForPrecondition", this->GetComponentLabel(), level, 0);
/** Set the number of image samples used to compute the 'exact' gradient.
* By default, if nothing supplied by the user, 100000. This works in general.
* If the image is smaller, the number of samples is automatically reduced later.
*/
this->m_NumberOfSamplesForNoiseCompensationFactor = 100000;
configuration.ReadParameter(this->m_NumberOfSamplesForNoiseCompensationFactor,
"NumberOfSamplesForNoiseCompensationFactor",
this->GetComponentLabel(),
level,
0);
/** Set/Get the scaling factor zeta of the sigmoid width. Large values
* cause a more wide sigmoid. Default: 0.1. Should be > 0.
*/
double sigmoidScaleFactor = 0.1;
configuration.ReadParameter(sigmoidScaleFactor, "SigmoidScaleFactor", this->GetComponentLabel(), level, 0);
this->m_SigmoidScaleFactor = sigmoidScaleFactor;
/** Set the regularization factor kappa. */
this->m_RegularizationKappa = 0.8;
configuration.ReadParameter(
this->m_RegularizationKappa, "RegularizationKappa", this->GetComponentLabel(), level, 0);
/** Set the regularization factor kappa. */
this->m_ConditionNumber = 2.0;
configuration.ReadParameter(this->m_ConditionNumber, "ConditionNumber", this->GetComponentLabel(), level, 0);
} // end if automatic parameter estimation
else
{
/** If no automatic parameter estimation is used, a and alpha also need
* to be specified.
*/
double a = 400.0; // arbitrary guess
double alpha = 0.602;
configuration.ReadParameter(a, "SP_a", this->GetComponentLabel(), level, 0);
configuration.ReadParameter(alpha, "SP_alpha", this->GetComponentLabel(), level, 0);
this->SetParam_a(a);
this->SetParam_alpha(alpha);
/** Set/Get the maximum of the sigmoid. Should be > 0. Default: 1.0. */
double sigmoidMax = 1.0;
configuration.ReadParameter(sigmoidMax, "SigmoidMax", this->GetComponentLabel(), level, 0);
this->SetSigmoidMax(sigmoidMax);
/** Set/Get the minimum of the sigmoid. Should be < 0. Default: -0.8. */
double sigmoidMin = -0.8;
configuration.ReadParameter(sigmoidMin, "SigmoidMin", this->GetComponentLabel(), level, 0);
this->SetSigmoidMin(sigmoidMin);
/** Set/Get the scaling of the sigmoid width. Large values
* cause a more wide sigmoid. Default: 1e-8. Should be >0.
*/
double sigmoidScale = 1e-8;
configuration.ReadParameter(sigmoidScale, "SigmoidScale", this->GetComponentLabel(), level, 0);
this->SetSigmoidScale(sigmoidScale);
} // end else: no automatic parameter estimation
} // end BeforeEachResolution()
/**
* ***************** AfterEachIteration *************************
*/
template <class TElastix>
void
AdaGrad<TElastix>::AfterEachIteration()
{
/** Print some information. */
this->GetIterationInfoAt("2:Metric") << this->GetValue();
this->GetIterationInfoAt("3a:Time") << this->GetCurrentTime();
this->GetIterationInfoAt("3b:StepSize") << this->GetLearningRate() * this->m_NoiseFactor;
bool asFastAsPossible = false;
if (asFastAsPossible)
{
this->GetIterationInfoAt("4a:||Gradient||") << "---";
this->GetIterationInfoAt("4b:||SearchDirection||") << "---";
}
else
{
this->GetIterationInfoAt("4a:||Gradient||") << this->GetGradient().magnitude();
this->GetIterationInfoAt("4b:||SearchDirection||") << this->GetSearchDirection().magnitude();
}
/** Select new spatial samples for the computation of the metric. */
if (this->GetNewSamplesEveryIteration())
{
this->SelectNewSamples();
}
} // end AfterEachIteration()
/**
* ***************** AfterEachResolution *************************
*/
template <class TElastix>
void
AdaGrad<TElastix>::AfterEachResolution()
{
/** Get the current resolution level. */
unsigned int level = static_cast<unsigned int>(this->m_Registration->GetAsITKBaseType()->GetCurrentLevel());
/**
* enum StopConditionType {
* MaximumNumberOfIterations,
* MetricError,
* MinimumStepSize } ;
*/
std::string stopcondition;
switch (this->GetStopCondition())
{
case MaximumNumberOfIterations:
stopcondition = "Maximum number of iterations has been reached";
break;
case MetricError:
stopcondition = "Error in metric";
break;
case MinimumStepSize:
stopcondition = "The minimum step length has been reached";
break;
default:
stopcondition = "Unknown";
break;
}
/** Print the stopping condition. */
log::info(std::ostringstream{} << "Stopping condition: " << stopcondition << ".");
/** Store the used parameters, for later printing to screen. */
SettingsType settings;
settings.a = this->GetParam_a();
settings.A = this->GetParam_A();
settings.alpha = this->GetParam_alpha();
settings.fmax = this->GetSigmoidMax();
settings.fmin = this->GetSigmoidMin();
settings.omega = this->GetSigmoidScale();
this->m_SettingsVector.push_back(settings);
/** Print settings that were used in this resolution. */
SettingsVectorType tempSettingsVector;
tempSettingsVector.push_back(settings);
log::info(std::ostringstream{} << "Settings of " << this->elxGetClassName() << " in resolution " << level << ":");
Superclass2::PrintSettingsVector(tempSettingsVector);
} // end AfterEachResolution()
/**
* ******************* AfterRegistration ************************
*/
template <class TElastix>
void
AdaGrad<TElastix>::AfterRegistration()
{
/** Print the best metric value. */
double bestValue = this->GetValue();
log::info(std::ostringstream{} << '\n'
<< "Final metric value = " << bestValue << '\n'
<< "Settings of " << this->elxGetClassName() << " for all resolutions:");
Superclass2::PrintSettingsVector(this->m_SettingsVector);
} // end AfterRegistration()
/**
* ****************** StartOptimization *************************
*/
template <class TElastix>
void
AdaGrad<TElastix>::StartOptimization()
{
/** As this optimizer estimates the scales itself, no other scales are used. */
this->SetUseScales(false);
this->m_AutomaticParameterEstimationDone = false;
this->Superclass1::StartOptimization();
} // end StartOptimization()
/**
* ********************** AdvanceOneStep **********************
*/
template <class TElastix>
void
AdaGrad<TElastix>::AdvanceOneStep()
{
/** Get space dimension. */
const unsigned int spaceDimension = this->GetScaledCostFunction()->GetNumberOfParameters();
/** Compute and set the learning rate. */
double lamda = this->GetParam_a() / (1.0 + this->Superclass1::GetCurrentTime() / this->GetParam_A());
this->SetLearningRate(lamda);
DerivativeType & searchDirection = this->m_SearchDirection;
/** Get a reference to the previously allocated newPosition. */
ParametersType & newPosition = this->m_ScaledCurrentPosition;
/** Get a reference to the current position. */
const ParametersType & currentPosition = this->GetScaledCurrentPosition();
/** Update the new position. */
const double eta = 1e-14;
const double lamda2 = lamda * this->m_NoiseFactor;
// const double lamda2 = 0.01;
for (unsigned int j = 0; j < spaceDimension; ++j)
{
this->m_PreconditionVector[j] += this->m_Gradient[j] * this->m_Gradient[j];
searchDirection[j] = this->m_Gradient[j] / (std::sqrt(this->m_PreconditionVector[j] + eta));
newPosition[j] = currentPosition[j] - lamda2 * searchDirection[j];
}
this->Superclass1::UpdateCurrentTime();
this->InvokeEvent(itk::IterationEvent());
} // end AdvanceOneStep()
/**
* ********************** ResumeOptimization **********************
*/
template <class TElastix>
void
AdaGrad<TElastix>::ResumeOptimization()
{
/** The following code relies on the fact that all components have been set up and
* that the initial position has been set, so must be called in this function.
*/
if (this->GetAutomaticParameterEstimation() && !this->m_AutomaticParameterEstimationDone)
{
this->AutomaticPreconditionerEstimation();
this->m_AutomaticParameterEstimationDone = true; // hack
}
this->Superclass1::ResumeOptimization();
} // end ResumeOptimization()
/**
* ****************** MetricErrorResponse *************************
*/
template <class TElastix>
void
AdaGrad<TElastix>::MetricErrorResponse(itk::ExceptionObject & err)
{
if (this->GetCurrentIteration() != this->m_PreviousErrorAtIteration)
{
this->m_PreviousErrorAtIteration = this->GetCurrentIteration();
this->m_CurrentNumberOfSamplingAttempts = 1;
}
else
{
this->m_CurrentNumberOfSamplingAttempts++;
}
if (this->m_CurrentNumberOfSamplingAttempts <= this->m_MaximumNumberOfSamplingAttempts)
{
this->SelectNewSamples();
this->ResumeOptimization();
}
else
{
/** Stop optimization and pass on exception. */
this->Superclass1::MetricErrorResponse(err);
}
} // end MetricErrorResponse()
/**
* ******************* AutomaticPreconditionerEstimation **********************
*/
template <class TElastix>
void
AdaGrad<TElastix>::AutomaticPreconditionerEstimation()
{
/** Total time. */
itk::TimeProbe timer, timer4;
timer.Start();
log::info(std::ostringstream{} << "Starting preconditioner estimation for " << this->elxGetClassName() << " ...");
/** Get current position to start the parameter estimation. */
this->GetRegistration()->GetAsITKBaseType()->GetModifiableTransform()->SetParameters(this->GetCurrentPosition());
/** Get the number of parameters. */
unsigned int P =
static_cast<unsigned int>(this->GetRegistration()->GetAsITKBaseType()->GetTransform()->GetNumberOfParameters());
this->m_SearchDirection = ParametersType(P);
this->m_SearchDirection.Fill(0.0); // if the print out is not needed, this could be removed. YQ
/** Cast to advanced metric type. */
using MetricType = typename ElastixType::MetricBaseType::AdvancedMetricType;
MetricType * testPtr = dynamic_cast<MetricType *>(this->GetElastix()->GetElxMetricBase()->GetAsITKBaseType());
if (!testPtr)
{
itkExceptionMacro("ERROR: VoxelWiseASGD expects the metric to be of type AdvancedImageToImageMetric!");
}
/** Getting pointers to the samplers. */
const unsigned int M = this->GetElastix()->GetNumberOfMetrics();
std::vector<ImageSamplerBasePointer> originalSampler(M);
for (unsigned int m = 0; m < M; ++m)
{
ImageSamplerBasePointer sampler = this->GetElastix()->GetElxMetricBase(m)->GetAdvancedMetricImageSampler();
originalSampler[m] = sampler.GetPointer();
}
#if 0
/** Get the current resolution level. */
unsigned int level = static_cast<unsigned int>(this->m_Registration->GetAsITKBaseType()->GetCurrentLevel());
/** Create some samplers that can be used for the pre-conditioner computation. */
//std::vector< ImageRandomCoordinateSamplerPointer > preconditionSamplers( M, 0 ); // very slow, leave this for reminder. YQ
std::vector< ImageRandomSamplerPointer > preconditionSamplers( M );
for( unsigned int m = 0; m < M; ++m )
{
ImageSamplerBasePointer sampler =
this->GetElastix()->GetElxMetricBase( m )->GetAdvancedMetricImageSampler();
//preconditionSamplers[ m ] = ImageRandomCoordinateSamplerType::New();
preconditionSamplers[ m ] = ImageRandomSamplerType::New();
preconditionSamplers[ m ]->SetInput( sampler->GetInput() );
preconditionSamplers[ m ]->SetInputImageRegion( sampler->GetInputImageRegion() );
preconditionSamplers[ m ]->SetMask( sampler->GetMask() );
preconditionSamplers[ m ]->SetNumberOfSamples( this->m_NumberOfSamplesForPrecondition );
preconditionSamplers[ m ]->Update();
this->GetElastix()->GetElxMetricBase( m )
->SetAdvancedMetricImageSampler( preconditionSamplers[ m ] );
}
/** Construct preconditionerEstimator to initialize the preconditioner estimation. */
PreconditionerEstimationPointer preconditionerEstimator = PreconditionerEstimationType::New();
preconditionerEstimator->SetFixedImage( testPtr->GetFixedImage() );
preconditionerEstimator->SetFixedImageRegion( testPtr->GetFixedImageRegion() );
preconditionerEstimator->SetFixedImageMask( testPtr->GetFixedImageMask() );
preconditionerEstimator->SetTransform(
this->GetRegistration()->GetAsITKBaseType()->GetTransform() );
preconditionerEstimator->SetCostFunction( this->m_CostFunction );
preconditionerEstimator->SetNumberOfJacobianMeasurements(
this->m_NumberOfJacobianMeasurements );
preconditionerEstimator->SetRegularizationKappa( this->m_RegularizationKappa );
preconditionerEstimator->SetMaximumStepLength( this->m_MaximumStepLength );
preconditionerEstimator->SetConditionNumber( this->m_ConditionNumber );
preconditionerEstimator->SetUseScales( false ); // Make sure scales are not used
#endif
const Configuration & configuration = itk::Deref(Superclass2::GetConfiguration());
/** Construct the preconditioner and initialize. */
this->m_PreconditionVector = ParametersType(P);
this->m_PreconditionVector.Fill(0.0);
#if 0
/** Compute the preconditioner. */
itk::TimeProbe timer_P; timer_P.Start();
log::info(std::ostringstream{} << " Computing preconditioner ...");
double maxJJ = 0; // needed for the noise compensation term
bool JacobiType = false;
configuration.ReadParameter( JacobiType,
"JacobiTypePreconditioner", this->GetComponentLabel(), level, 0 );
if( JacobiType )
{
preconditionerEstimator->ComputeJacobiTypePreconditioner(
maxJJ, this->m_PreconditionVector );
}
else
{
preconditionerEstimator->Compute( this->GetScaledCurrentPosition(),
maxJJ, this->m_PreconditionVector );
}
timer_P.Stop();
elxout << " Computing the preconditioner took " << Conversion::SecondsToDHMS( timer_P.GetMean(), 6 ) << std::endl;
elxout << std::scientific << "The preconditioner: [ ";
for( unsigned int i = 0; i < P; ++i ) elxout << m_PreconditionVector[ i ] << " ";
elxout << "]" << std::endl << std::fixed;
/** Set the sampler back to the original. */
for( unsigned int m = 0; m < M; ++m )
{
this->GetElastix()->GetElxMetricBase( m )->SetAdvancedMetricImageSampler( originalSampler[ m ] );
}
#endif
/** Construct computeJacobianTerms to initialize the parameter estimation. */
double jacg = 0.0;
double maxJJ = 0.0;
typename ComputeDisplacementDistributionType::Pointer computeDisplacementDistribution =
ComputeDisplacementDistributionType::New();
computeDisplacementDistribution->SetFixedImage(testPtr->GetFixedImage());
computeDisplacementDistribution->SetFixedImageRegion(testPtr->GetFixedImageRegion());
computeDisplacementDistribution->SetFixedImageMask(testPtr->GetFixedImageMask());
computeDisplacementDistribution->SetTransform(this->GetRegistration()->GetAsITKBaseType()->GetModifiableTransform());
computeDisplacementDistribution->SetCostFunction(this->m_CostFunction);
computeDisplacementDistribution->SetNumberOfJacobianMeasurements(this->m_NumberOfJacobianMeasurements);
std::string maximumDisplacementEstimationMethod = "2sigma";
configuration.ReadParameter(
maximumDisplacementEstimationMethod, "MaximumDisplacementEstimationMethod", this->GetComponentLabel(), 0, 0);
/** Compute the Jacobian terms. */
log::info(" Computing displacement distribution ...");
timer4.Start();
computeDisplacementDistribution->Compute(
this->GetScaledCurrentPosition(), jacg, maxJJ, maximumDisplacementEstimationMethod);
timer4.Stop();
log::info(std::ostringstream{} << " Computing the displacement distribution took "
<< Conversion::SecondsToDHMS(timer4.GetMean(), 6));
/** Sample the fixed image to estimate the noise factor. */
itk::TimeProbe timer_noise;
timer_noise.Start();
double sigma4factor = 1.0;
double sigma4 = 0.0;
log::info(std::ostringstream{} << " The estimated MaxJJ is: " << maxJJ);
if (maxJJ > 1e-14)
{
sigma4 = sigma4factor * this->m_MaximumStepLength / std::sqrt(maxJJ);
}
double gg = 0.0;
double ee = 0.0;
this->SampleGradients(this->GetScaledCurrentPosition(), sigma4, gg, ee);
this->m_NoiseFactor = gg / (gg + ee);
timer_noise.Stop();
log::info(std::ostringstream{} << " The MaxJJ used for noisefactor is: " << maxJJ << '\n'
<< " The NoiseFactor is: " << m_NoiseFactor << '\n'
<< " Compute the noise compensation took "
<< Conversion::SecondsToDHMS(timer_noise.GetMean(), 6));
// MS: the following can probably be removed or moved.
// YQ: these variables are used to update the time for adaptive step size.
// See in itkPreconditionedASGDOptimizer.cxx
/** Initial of the variables. */
const double alpha = 1.0;
const double fmax = 1.0;
const double fmin = -0.8;
/** Set parameters in superclass. */
this->SetParam_alpha(alpha);
this->SetSigmoidMax(fmax);
this->SetSigmoidMin(fmin);
/** Initial of the variables. */
double a = 1.0;
const double A = this->GetParam_A();
const double delta = this->GetMaximumStepLength();
a = delta * std::pow(A + 1.0, alpha) / (jacg + 1e-14);
this->SetParam_a(a);
/** Print the elapsed time. */
timer.Stop();
log::info(std::ostringstream{} << "Automatic preconditioner estimation took "
<< Conversion::SecondsToDHMS(timer.GetMean(), 2));
} // end AutomaticPreconditionerEstimation()
/**
* ******************** SampleGradients **********************
*/
template <class TElastix>
void
AdaGrad<TElastix>::SampleGradients(const ParametersType & mu0, double perturbationSigma, double & gg, double & ee)
{
/** Some shortcuts. */
const unsigned int M = this->GetElastix()->GetNumberOfMetrics();
/** Variables for sampler support. Each metric may have a sampler. */
std::vector<bool> useRandomSampleRegionVec(M, false);
std::vector<ImageRandomSamplerBasePointer> randomSamplerVec(M);
std::vector<ImageRandomCoordinateSamplerPointer> randomCoordinateSamplerVec(M);
std::vector<ImageGridSamplerPointer> gridSamplerVec(M);
/** If new samples every iteration, get each sampler, and check if it is
* a kind of random sampler. If yes, prepare an additional grid sampler
* for the exact gradients, and set the stochasticgradients flag to true.
*/
bool stochasticgradients = false;
if (this->GetNewSamplesEveryIteration())
{
for (unsigned int m = 0; m < M; ++m)
{
/** Get the sampler. */
ImageSamplerBasePointer sampler = this->GetElastix()->GetElxMetricBase(m)->GetAdvancedMetricImageSampler();
randomSamplerVec[m] = dynamic_cast<ImageRandomSamplerBaseType *>(sampler.GetPointer());
randomCoordinateSamplerVec[m] = dynamic_cast<ImageRandomCoordinateSamplerType *>(sampler.GetPointer());
if (randomSamplerVec[m].IsNotNull())
{
/** At least one of the metric has a random sampler. */
stochasticgradients |= true;
/** If the sampler is a randomCoordinateSampler set the UseRandomSampleRegion
* property to false temporarily. It disturbs the parameter estimation.
* At the end of this function the original setting is set back.
* Also, the AdaptiveStepSize mechanism is turned off when any of the samplers
* has UseRandomSampleRegion==true.
* \todo Extend ASGD to really take into account random region sampling.
* \todo This does not work for the MultiInputRandomCoordinateImageSampler,
* because it does not inherit from the RandomCoordinateImageSampler
*/
if (randomCoordinateSamplerVec[m].IsNotNull())
{
useRandomSampleRegionVec[m] = randomCoordinateSamplerVec[m]->GetUseRandomSampleRegion();
if (useRandomSampleRegionVec[m])
{
if (this->m_StepSizeStrategy == "Adaptive")
{
log::warn(
"WARNING: StepSizeStrategy is set to Constant, because UseRandomSampleRegion is set to \"true\".");
this->m_StepSizeStrategy = "Constant";
}
}
/** Do not turn it off yet, as it would go wrong if you multiple metrics are using
* all the same sampler. */
// randomCoordinateSamplerVec[ m ]->SetUseRandomSampleRegion( false );
} // end if random coordinate sampler
/** Set up the grid sampler for the "exact" gradients.
* Copy settings from the random sampler and update.
*/
gridSamplerVec[m] = ImageGridSamplerType::New();
gridSamplerVec[m]->SetInput(randomSamplerVec[m]->GetInput());
gridSamplerVec[m]->SetInputImageRegion(randomSamplerVec[m]->GetInputImageRegion());
gridSamplerVec[m]->SetMask(randomSamplerVec[m]->GetMask());
gridSamplerVec[m]->SetNumberOfSamples(this->m_NumberOfSamplesForNoiseCompensationFactor);
gridSamplerVec[m]->Update();
} // end if random sampler
} // end for loop over metrics
/** Start a second loop over all metrics to turn off the random region sampling. */
for (unsigned int m = 0; m < M; ++m)
{
if (randomCoordinateSamplerVec[m].IsNotNull())
{
randomCoordinateSamplerVec[m]->SetUseRandomSampleRegion(false);
}
} // end loop over metrics
} // end if NewSamplesEveryIteration.
const Configuration & configuration = itk::Deref(Superclass2::GetConfiguration());
/** Prepare for progress printing. */
const bool showProgressPercentage = configuration.RetrieveParameterValue(false, "ShowProgressPercentage", 0, false);
const auto progressObserver = showProgressPercentage
? ProgressCommand::CreateAndSetUpdateFrequency(this->m_NumberOfGradientMeasurements)
: nullptr;
log::info(" Sampling gradients ...");
/** Initialize some variables for storing gradients and their magnitudes. */
const unsigned int P = this->GetElastix()->GetElxTransformBase()->GetAsITKBaseType()->GetNumberOfParameters();
DerivativeType approxgradient(P);
DerivativeType exactgradient(P);
DerivativeType searchDirection(P);
DerivativeType diffgradient;
double exactgg = 0.0;
double diffgg = 0.0;
double approxgg = 0.0;
/** Compute gg for some random parameters. */
for (unsigned int i = 0; i < this->m_NumberOfGradientMeasurements; ++i)
{
if (progressObserver != nullptr)
{
/** Show progress 0-100% */
progressObserver->UpdateAndPrintProgress(i);
}
/** Generate a perturbation, according to:
* \mu_i ~ N( \mu_0, perturbationsigma^2 I ).
*/
ParametersType perturbedMu0 = mu0;
this->AddRandomPerturbation(perturbedMu0, perturbationSigma);
/** Compute contribution to exactgg and diffgg. */
if (stochasticgradients)
{
/** Set grid sampler(s) and get exact derivative. */
for (unsigned int m = 0; m < M; ++m)
{
if (gridSamplerVec[m].IsNotNull())
{
this->GetElastix()->GetElxMetricBase(m)->SetAdvancedMetricImageSampler(gridSamplerVec[m]);
}
}
this->GetScaledDerivativeWithExceptionHandling(perturbedMu0, exactgradient);
exactgg += inner_product(exactgradient, exactgradient);
/** Set random sampler(s), select new spatial samples and get approximate derivative. */
for (unsigned int m = 0; m < M; ++m)
{
if (randomSamplerVec[m].IsNotNull())
{
this->GetElastix()->GetElxMetricBase(m)->SetAdvancedMetricImageSampler(randomSamplerVec[m]);
}
}
this->SelectNewSamples();
this->GetScaledDerivativeWithExceptionHandling(perturbedMu0, approxgradient);
/** Compute error vector. */
diffgradient = exactgradient - approxgradient;
approxgg = inner_product(diffgradient, diffgradient);
diffgg += approxgg;
}
else // no stochastic gradients
{
/** Get exact gradient. */
this->GetScaledDerivativeWithExceptionHandling(perturbedMu0, exactgradient);
/** Compute g^T g. NB: diffgg=0. */
exactgg += exactgradient.squared_magnitude();
} // end else: no stochastic gradients
} // end for loop over gradient measurements
if (progressObserver != nullptr)
{
progressObserver->PrintProgress(1.0);
}
/** Compute means. */
exactgg /= this->m_NumberOfGradientMeasurements;
diffgg /= this->m_NumberOfGradientMeasurements;
/** For output: gg and ee.
* gg and ee will be divided by Pd, but actually need to be divided by
* the rank, in case of maximum likelihood. In case of no maximum likelihood,
* the rank equals Pd.
*/
gg = std::abs(exactgg);
ee = std::abs(diffgg);
/** Set back useRandomSampleRegion flag to what it was. */
for (unsigned int m = 0; m < M; ++m)
{
if (randomCoordinateSamplerVec[m].IsNotNull())
{
randomCoordinateSamplerVec[m]->SetUseRandomSampleRegion(useRandomSampleRegionVec[m]);
}
}
} // end SampleGradients()
/**
* *************** GetScaledDerivativeWithExceptionHandling ***************
*/
template <class TElastix>
void
AdaGrad<TElastix>::GetScaledDerivativeWithExceptionHandling(const ParametersType & parameters,
DerivativeType & derivative)
{
double dummyvalue = 0;
try
{
this->GetScaledValueAndDerivative(parameters, dummyvalue, derivative);
}
catch (const itk::ExceptionObject &)
{
this->m_StopCondition = MetricError;
this->StopOptimization();
throw;
}
} // end GetScaledDerivativeWithExceptionHandling()
/**
* *************** AddRandomPerturbation ***************
*/
template <class TElastix>
void
AdaGrad<TElastix>::AddRandomPerturbation(ParametersType & parameters, double sigma)
{
/** Add delta ~ sigma * N(0,I) to the input parameters. */
for (unsigned int p = 0; p < parameters.GetSize(); ++p)
{
parameters[p] += sigma * this->m_RandomGenerator->GetNormalVariate(0.0, 1.0);
}
} // end AddRandomPerturbation()
} // end namespace elastix
#endif // end #ifndef elxAdaGrad_hxx
|