File: itkAdaptiveStepsizeOptimizer.cxx

package info (click to toggle)
elastix 5.2.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 42,480 kB
  • sloc: cpp: 68,403; lisp: 4,118; python: 1,013; xml: 182; sh: 177; makefile: 33
file content (83 lines) | stat: -rw-r--r-- 2,639 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
/*=========================================================================
 *
 *  Copyright UMC Utrecht and contributors
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *        http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkAdaptiveStepsizeOptimizer.h"

#include <vnl/vnl_math.h>
#include "itkSigmoidImageFilter.h"

namespace itk
{

/**
 * ************************* Constructor ************************
 */

AdaptiveStepsizeOptimizer::AdaptiveStepsizeOptimizer() = default;


/**
 * ************************** UpdateCurrentTime ********************
 */

void
AdaptiveStepsizeOptimizer::UpdateCurrentTime()
{
  using SigmoidType = itk::Functor::Sigmoid<double, double>;

  if (this->m_StepSizeStrategy == "Adaptive")
  {
    if (this->GetCurrentIteration() > 0)
    {
      /** Make sigmoid function
       * Compute beta such that sigmoid(0)=0
       * We assume Max>0, min<0 */
      SigmoidType sigmoid;
      sigmoid.SetOutputMaximum(this->GetSigmoidMax());
      sigmoid.SetOutputMinimum(this->GetSigmoidMin());
      sigmoid.SetAlpha(this->GetSigmoidScale());
      const double beta = this->GetSigmoidScale() * std::log(-this->GetSigmoidMax() / this->GetSigmoidMin());
      sigmoid.SetBeta(beta);

      /** Formula (2) in Cruz */
      const double inprod = inner_product(this->m_PreviousSearchDirection, this->GetGradient());
      this->m_CurrentTime += sigmoid(-inprod);
      this->m_CurrentTime = std::max(0.0, this->m_CurrentTime);
    }

    /** Save for next iteration */
    this->m_PreviousSearchDirection = this->GetSearchDirection();
  }
  /** Decaying or constant step size. */
  else if (this->m_StepSizeStrategy == "Decaying")
  {
    /** Almost Robbins-Monro: time = time + E_0.
     * If you want the parameter estimation but no adaptive stuff,
     * this may be use useful:  */
    // this->m_CurrentTime += ( this->GetSigmoidMax() + this->GetSigmoidMin() ) / 2.0;
    this->m_CurrentTime += 1.0;
  }
  else if (this->m_StepSizeStrategy == "Constant")
  {
    this->m_CurrentTime = 0.0;
  }

} // end UpdateCurrentTime()


} // end namespace itk