1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
/*=========================================================================
*
* Copyright UMC Utrecht and contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkStochasticVarianceReducedGradientDescentOptimizer_h
#define itkStochasticVarianceReducedGradientDescentOptimizer_h
#include "itkScaledSingleValuedNonLinearOptimizer.h"
#include "itkMultiThreaderBase.h"
namespace itk
{
/** \class StochasticVarianceReducedGradientDescentOptimizer
* \brief Implement a gradient descent optimizer
*
* StochasticVarianceReducedGradientDescentOptimizer implements a simple gradient descent optimizer.
* At each iteration the current position is updated according to
*
* \f[
* p_{n+1} = p_n
* + \mbox{learningRate} \, \frac{\partial f(p_n) }{\partial p_n}
* \f]
*
* The learning rate is a fixed scalar defined via SetLearningRate().
* The optimizer steps through a user defined number of iterations;
* no convergence checking is done.
*
* Additionally, user can scale each component of the \f$\partial f / \partial p\f$
* but setting a scaling vector using method SetScale().
*
* The difference of this class with the itk::GradientDescentOptimizer
* is that it's based on the ScaledSingleValuedNonLinearOptimizer
*
* \sa ScaledSingleValuedNonLinearOptimizer
*
* \ingroup Numerics Optimizers
*/
class StochasticVarianceReducedGradientDescentOptimizer : public ScaledSingleValuedNonLinearOptimizer
{
public:
ITK_DISALLOW_COPY_AND_MOVE(StochasticVarianceReducedGradientDescentOptimizer);
/** Standard class typedefs. */
using Self = StochasticVarianceReducedGradientDescentOptimizer;
using Superclass = ScaledSingleValuedNonLinearOptimizer;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro(StochasticVarianceReducedGradientDescentOptimizer, ScaledSingleValuedNonLinearOptimizer);
/** Typedefs inherited from the superclass. */
using Superclass::MeasureType;
using Superclass::ParametersType;
using Superclass::DerivativeType;
using Superclass::CostFunctionType;
using Superclass::ScalesType;
using Superclass::ScaledCostFunctionType;
using Superclass::ScaledCostFunctionPointer;
/** Codes of stopping conditions
* The MinimumStepSize stop condition never occurs, but may
* be implemented in inheriting classes */
enum StopConditionType
{
MaximumNumberOfIterations,
MetricError,
MinimumStepSize,
InvalidDiagonalMatrix,
GradientMagnitudeTolerance,
LineSearchError
};
/** Advance one step following the gradient direction. */
virtual void
AdvanceOneStep();
/** Start optimization. */
void
StartOptimization() override;
/** Resume previously stopped optimization with current parameters
* \sa StopOptimization. */
virtual void
ResumeOptimization();
/** Stop optimization and pass on exception. */
virtual void
MetricErrorResponse(ExceptionObject & err);
/** Stop optimization.
* \sa ResumeOptimization */
virtual void
StopOptimization();
/** Set the learning rate. */
itkSetMacro(LearningRate, double);
/** Get the learning rate. */
itkGetConstReferenceMacro(LearningRate, double);
/** Set the number of iterations. */
itkSetMacro(NumberOfIterations, unsigned long);
/** Get the inner LBFGSMemory. */
itkGetConstMacro(LBFGSMemory, unsigned int);
/** Get the number of iterations. */
itkGetConstReferenceMacro(NumberOfIterations, unsigned long);
/** Get the number of inner loop iterations. */
itkGetConstReferenceMacro(NumberOfInnerIterations, unsigned long);
/** Get the current iteration number. */
itkGetConstMacro(CurrentIteration, unsigned int);
/** Get the current inner iteration number. */
itkGetConstMacro(CurrentInnerIteration, unsigned int);
/** Get the current value. */
itkGetConstReferenceMacro(Value, double);
/** Get Stop condition. */
itkGetConstReferenceMacro(StopCondition, StopConditionType);
/** Get current gradient. */
itkGetConstReferenceMacro(Gradient, DerivativeType);
/** Get current search direction. */
itkGetConstReferenceMacro(SearchDir, DerivativeType);
/** Set the Previous Position. */
itkSetMacro(PreviousPosition, ParametersType);
/** Get the Previous Position. */
itkGetConstReferenceMacro(PreviousPosition, ParametersType);
/** Set the Previous gradient. */
itkSetMacro(PreviousGradient, DerivativeType);
/** Get the Previous gradient. */
itkGetConstReferenceMacro(PreviousGradient, DerivativeType);
/** Set the number of threads. */
void
SetNumberOfWorkUnits(ThreadIdType numberOfThreads)
{
this->m_Threader->SetNumberOfWorkUnits(numberOfThreads);
}
// itkGetConstReferenceMacro( NumberOfThreads, ThreadIdType );
itkSetMacro(UseMultiThread, bool);
itkSetMacro(UseEigen, bool);
protected:
StochasticVarianceReducedGradientDescentOptimizer();
~StochasticVarianceReducedGradientDescentOptimizer() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override;
/** Typedef for multi-threading. */
using ThreadInfoType = MultiThreaderBase::WorkUnitInfo;
// made protected so subclass can access
double m_Value{ 0.0 };
DerivativeType m_Gradient{};
ParametersType m_SearchDir{};
ParametersType m_PreviousSearchDir{};
// ParametersType m_PrePreviousSearchDir;
ParametersType m_MeanSearchDir{};
double m_LearningRate{ 1.0 };
StopConditionType m_StopCondition{ MaximumNumberOfIterations };
DerivativeType m_PreviousGradient{};
// DerivativeType m_PrePreviousGradient;
ParametersType m_PreviousPosition{};
MultiThreaderBase::Pointer m_Threader{ MultiThreaderBase::New() };
bool m_Stop{ false };
unsigned long m_NumberOfIterations{ 100 };
unsigned long m_NumberOfInnerIterations{};
unsigned long m_CurrentIteration{ 0 };
unsigned long m_CurrentInnerIteration{};
unsigned long m_LBFGSMemory{ 0 };
private:
// multi-threaded AdvanceOneStep:
bool m_UseMultiThread{ false };
struct MultiThreaderParameterType
{
ParametersType * t_NewPosition;
Self * t_Optimizer;
};
bool m_UseEigen{ false };
/** The callback function. */
static ITK_THREAD_RETURN_FUNCTION_CALL_CONVENTION
AdvanceOneStepThreaderCallback(void * arg);
/** The threaded implementation of AdvanceOneStep(). */
inline void
ThreadedAdvanceOneStep(ThreadIdType threadId, ParametersType & newPosition);
};
} // end namespace itk
#endif
|