File: itkStochasticVarianceReducedGradientDescentOptimizer.h

package info (click to toggle)
elastix 5.2.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 42,480 kB
  • sloc: cpp: 68,403; lisp: 4,118; python: 1,013; xml: 182; sh: 177; makefile: 33
file content (224 lines) | stat: -rw-r--r-- 7,272 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
/*=========================================================================
 *
 *  Copyright UMC Utrecht and contributors
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *        http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkStochasticVarianceReducedGradientDescentOptimizer_h
#define itkStochasticVarianceReducedGradientDescentOptimizer_h

#include "itkScaledSingleValuedNonLinearOptimizer.h"
#include "itkMultiThreaderBase.h"

namespace itk
{
/** \class StochasticVarianceReducedGradientDescentOptimizer
 * \brief Implement a gradient descent optimizer
 *
 * StochasticVarianceReducedGradientDescentOptimizer implements a simple gradient descent optimizer.
 * At each iteration the current position is updated according to
 *
 * \f[
 *        p_{n+1} = p_n
 *                + \mbox{learningRate} \, \frac{\partial f(p_n) }{\partial p_n}
 * \f]
 *
 * The learning rate is a fixed scalar defined via SetLearningRate().
 * The optimizer steps through a user defined number of iterations;
 * no convergence checking is done.
 *
 * Additionally, user can scale each component of the \f$\partial f / \partial p\f$
 * but setting a scaling vector using method SetScale().
 *
 * The difference of this class with the itk::GradientDescentOptimizer
 * is that it's based on the ScaledSingleValuedNonLinearOptimizer
 *
 * \sa ScaledSingleValuedNonLinearOptimizer
 *
 * \ingroup Numerics Optimizers
 */

class StochasticVarianceReducedGradientDescentOptimizer : public ScaledSingleValuedNonLinearOptimizer
{
public:
  ITK_DISALLOW_COPY_AND_MOVE(StochasticVarianceReducedGradientDescentOptimizer);

  /** Standard class typedefs. */
  using Self = StochasticVarianceReducedGradientDescentOptimizer;
  using Superclass = ScaledSingleValuedNonLinearOptimizer;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** Run-time type information (and related methods). */
  itkTypeMacro(StochasticVarianceReducedGradientDescentOptimizer, ScaledSingleValuedNonLinearOptimizer);

  /** Typedefs inherited from the superclass. */
  using Superclass::MeasureType;
  using Superclass::ParametersType;
  using Superclass::DerivativeType;
  using Superclass::CostFunctionType;
  using Superclass::ScalesType;
  using Superclass::ScaledCostFunctionType;
  using Superclass::ScaledCostFunctionPointer;

  /** Codes of stopping conditions
   * The MinimumStepSize stop condition never occurs, but may
   * be implemented in inheriting classes */
  enum StopConditionType
  {
    MaximumNumberOfIterations,
    MetricError,
    MinimumStepSize,
    InvalidDiagonalMatrix,
    GradientMagnitudeTolerance,
    LineSearchError
  };

  /** Advance one step following the gradient direction. */
  virtual void
  AdvanceOneStep();

  /** Start optimization. */
  void
  StartOptimization() override;

  /** Resume previously stopped optimization with current parameters
   * \sa StopOptimization. */
  virtual void
  ResumeOptimization();

  /** Stop optimization and pass on exception. */
  virtual void
  MetricErrorResponse(ExceptionObject & err);

  /** Stop optimization.
   * \sa ResumeOptimization */
  virtual void
  StopOptimization();

  /** Set the learning rate. */
  itkSetMacro(LearningRate, double);

  /** Get the learning rate. */
  itkGetConstReferenceMacro(LearningRate, double);

  /** Set the number of iterations. */
  itkSetMacro(NumberOfIterations, unsigned long);

  /** Get the inner LBFGSMemory. */
  itkGetConstMacro(LBFGSMemory, unsigned int);

  /** Get the number of iterations. */
  itkGetConstReferenceMacro(NumberOfIterations, unsigned long);

  /** Get the number of inner loop iterations. */
  itkGetConstReferenceMacro(NumberOfInnerIterations, unsigned long);

  /** Get the current iteration number. */
  itkGetConstMacro(CurrentIteration, unsigned int);

  /** Get the current inner iteration number. */
  itkGetConstMacro(CurrentInnerIteration, unsigned int);

  /** Get the current value. */
  itkGetConstReferenceMacro(Value, double);

  /** Get Stop condition. */
  itkGetConstReferenceMacro(StopCondition, StopConditionType);

  /** Get current gradient. */
  itkGetConstReferenceMacro(Gradient, DerivativeType);

  /** Get current search direction. */
  itkGetConstReferenceMacro(SearchDir, DerivativeType);

  /** Set the Previous Position. */
  itkSetMacro(PreviousPosition, ParametersType);

  /** Get the Previous Position. */
  itkGetConstReferenceMacro(PreviousPosition, ParametersType);

  /** Set the Previous gradient. */
  itkSetMacro(PreviousGradient, DerivativeType);

  /** Get the Previous gradient. */
  itkGetConstReferenceMacro(PreviousGradient, DerivativeType);

  /** Set the number of threads. */
  void
  SetNumberOfWorkUnits(ThreadIdType numberOfThreads)
  {
    this->m_Threader->SetNumberOfWorkUnits(numberOfThreads);
  }
  // itkGetConstReferenceMacro( NumberOfThreads, ThreadIdType );
  itkSetMacro(UseMultiThread, bool);
  itkSetMacro(UseEigen, bool);

protected:
  StochasticVarianceReducedGradientDescentOptimizer();
  ~StochasticVarianceReducedGradientDescentOptimizer() override = default;
  void
  PrintSelf(std::ostream & os, Indent indent) const override;

  /** Typedef for multi-threading. */
  using ThreadInfoType = MultiThreaderBase::WorkUnitInfo;

  // made protected so subclass can access
  double         m_Value{ 0.0 };
  DerivativeType m_Gradient{};
  ParametersType m_SearchDir{};
  ParametersType m_PreviousSearchDir{};
  // ParametersType                m_PrePreviousSearchDir;
  ParametersType    m_MeanSearchDir{};
  double            m_LearningRate{ 1.0 };
  StopConditionType m_StopCondition{ MaximumNumberOfIterations };
  DerivativeType    m_PreviousGradient{};
  // DerivativeType                m_PrePreviousGradient;
  ParametersType             m_PreviousPosition{};
  MultiThreaderBase::Pointer m_Threader{ MultiThreaderBase::New() };

  bool          m_Stop{ false };
  unsigned long m_NumberOfIterations{ 100 };
  unsigned long m_NumberOfInnerIterations{};
  unsigned long m_CurrentIteration{ 0 };
  unsigned long m_CurrentInnerIteration{};
  unsigned long m_LBFGSMemory{ 0 };

private:
  // multi-threaded AdvanceOneStep:
  bool m_UseMultiThread{ false };
  struct MultiThreaderParameterType
  {
    ParametersType * t_NewPosition;
    Self *           t_Optimizer;
  };

  bool m_UseEigen{ false };

  /** The callback function. */
  static ITK_THREAD_RETURN_FUNCTION_CALL_CONVENTION
  AdvanceOneStepThreaderCallback(void * arg);

  /** The threaded implementation of AdvanceOneStep(). */
  inline void
  ThreadedAdvanceOneStep(ThreadIdType threadId, ParametersType & newPosition);
};

} // end namespace itk


#endif